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1  Introduction 
This reference manual describes MCRA Release 8.2. The acronym MCRA stands for Monte Carlo 

Risk Assessment. MCRA is a web-based platform for probabilistic risk assessment of substances in 

the diet (and optionally also from other routes of exposure). The MCRA platform brings together 

statistical models, shared data and data uploaded by the user. MCRA 8.2. has been implemented in the 

flexible environment for high-performance computing at RIVM, allowing the use of a flexible number 

of simulation worker services to address simultaneously submitted jobs in parallel (Figure 1). 

MCRA 8 is available at https://mcra.rivm.nl. 

 

 

 

 

Figure 1. MCRA 8.2 infrastructure 

  

https://mcra.rivm.nl/
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2  Assessment types 
In probabilistic risk assessment we consider a population of individuals. Risk assessment with MCRA 

can address acute risk or chronic risk. Acute risk is relevant when the short-term effect on 

individuals is relevant, chronic risk when the long-term effects on the individuals matter. In MCRA 

short-term is operationalised as one day, so effectively acute risk assessment is concerned with a 

population of person-days, whereas chronic risk assessment is concerned with a population of 

persons. 

  

Risk assessors may approach food safety in a population on at least three levels: 

1. Consumption Assessment: quantify the consumption of a possible risk food. 

2. Exposure Assessment: quantify the exposure to a substance (or group of substances) in the diet. 

3. Health Impact Assessment: quantify and integrate the impact on one or more health parameters 

from exposure to one or more substances in the diet. 

The hierarchical nature of these assessments is illustrated in Figure 2, also listing the required (colour) 

and optional (grey) data used for the assessments. 

 

 

Figure 2. Assessment types 

 

Currently, MCRA 8 implements Exposure Assessments and Health Impact Assessments. 

Consumption Assessments can be performed by using a dummy compound with concentration 1. It is 

the intention to add Consumption Assessments to a future release of the MCRA platform.  

 

The basic operation in exposure assessment is integrating consumption and concentration data per 

food. With multiple foods, consumptions are typically correlated, therefore MCRA works with the 

multivariate distribution of a consumption vector, as represented by the consumption data of 

individuals in a consumption survey. In contrast, the distributions of concentration for each food are 

typically considered to be independent between foods, e.g. eating an apple with an accidentally high 

residue concentration does not predict that another food eaten on the same day will also have a high 

residue concentration. As a consequence of this assumption, MCRA models concentrations of 

substances for each food independently.  

 

Exposure assessments are most often concerned with a single chemical substance. MCRA 8 also 

provides Cumulative Exposure Assessment for groups of substances which have been grouped in a 

Cumulative Assessment Group (CAG) for which a single health effect is considered relevant. This 

requires the availability of Hazard Doses or Relative Potency Factors (RPFs) for all the substances in 

the CAG. 

 

Health Impact Assessment 

Exposure Assessment 

Consumption Assessment 

Critical Effect Dose 

Data 

Concentration Data 

Consumption Data Foods 

Compounds 

Agricultural Use 

Processing Factors 

Variability Factors 
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MCRA was originally designed for dietary exposure assessment. In MCRA 8 it is also possible to 

perform Aggregate Exposure Assessment, combining multiple routes of non-dietary exposure 

(dermal, inhalatory, oral) with dietary exposure to aggregated internal exposure. This requires the 

specification of aborption factors for the relevants routes of exposure.  

 

In practice often a single food may be of special interest, for example if the effects of spraying a 

particular pesticide on a specific crop have to be assessed. For such cases MCRA 8 provides Focal 

Food Assessments, which allows concentration data for the focal food to be specified separately, and 

replace the concentration data for that food in the main concentration data.  

 

Total Diet Studies (TDS) are complement to traditional monitoring and surveillance programs and 

provide a scientific base for dietary exposures by analysing foods as consumed. For more information 

about Total Diet Studies, visit the TDS-Exposure website http://www.tds-exposure.eu. 

 

MCRA 8 has been developed as a program for high-tier probabilistic risk assessments. In addition it 

contains limited options for lower tier approaches. Dietary exposure point estimates are available 

that simply combine nominal or mean values for consumption, body weight and concentrations (see 

Appendix 15.10 ). For hazard, a low-tier approach is to use Tresholds of Toxicological Concern as a 

basis for hazard doses when these are not available directly or via RPFs. The system of tiered 

approaches will be further upgraded in a future release of MCRA. 

http://www.tds-exposure.eu/
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3  Food coding and conversion 
MCRA is intended to retain complete transparence of the results of risk assessment in terms of the 

foods that were actually consumed (foods-as-eaten). In many cases measurements of substances have 

not been made on the food-as-eaten, e.g. pizza, but on a raw agricultural commodity (RAC), e.g. 

tomato, onion etc. The food on which the concentration measurements have been made is termed the 

food-as-measured. MCRA implements a recursive search algorithm to link foods-as-eaten to foods-

as-measured. This means that there can be intermediate steps, e.g. if unpeeled apple and grapes are 

the foods-as-measured, the food-as-eaten apple pie contains peeled apple and raisins, peeled apple is 

linked to unpeeled apple, and raisins are dried grapes. 

3.1 Food code definition  

In MCRA, a food code is a string consisting of symbols. Some special symbols (. $ - *) are reserved 

for special use (see below), and can not be used freely in own codes.  

 

Codes can be hierarchical. Any code can be followed by $ or . plus a subtype code. This can be 

repeated any number of times, e.g. A$B$C$D, or A.B.C.D.  

 

Codes can specify food processing. Any code can be followed by - plus a processing code. Only one 

level of processing code is allowed (e.g. FP0226-2). Subtype codes should precede processing codes 

(e.g. NL005$123$456-2).  

The asterisk (*) serves as a wildcard for the preceding code: the processing information is valid for all 

codes that start with the code preceding the *. 

3.2 Food codes in consumption surveys 

Any coding system for foods-as-eaten can be used in MCRA. For example, in Europe EFSA develops 

a Food Classification and Description System for exposure assessment named FoodEx 2 (EFSA 

2011a,b), featuring a hierarchical system of a core list of foods, an extended list, and domain-specific 

hierarchies.  

3.3 Food codes in concentration data 

Any coding system for foods-as-measured can be used in MCRA.  

3.4 Food processing 

Concentrations of substances in foods may change when foods are processed. Examples of processing 

types are peeling (e.g. of apples), cooking (e.g. of spinach), drying (e.g. of grapes), juicing (e.g. of 

oranges). In MCRA a processing factor can be specified for any food. Processing factors specify the 

ratio of concentrations in the processed and unprocessed food. The food code of the processed food 

will be converted to the food code of the unprocessed food. In simulations the concentration in the 

unprocessed food will then be multiplied by the processing factor. 

Special attention is needed if food processing also changes the weight of the food. Traditionally, 

processing factors combine the effects of chemical alteration and weight change, so the weight change 

should not be double-counted. The processing correction factor is introduced to correct processing 

factors that combine both effects, e.g. when 100g raisins (dried grapes) are translated to 300g grape 

(food-as-measured) and the processing factor for drying combines both effects, the processing 

correction factor is 3. 

3.5 Recipes and food translation 

Recipes specify the composition of composite foods, e.g. pizza, in terms of relevant ingredients, e.g. 

100g pizza contains 10g tomato, 5g cheese and 50g flour. Recipes are also used to specify weight 

changes, e.g. to obtain 100g raisins (dried grapes) 300g of the food-as-measured grape is needed.  
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A special use of recipes and food translation is found in Total Diet Studies. Here, the composition of a 

Total Diet Study food is specified, e.g. TDS-food FruitMix is composed of apple, orange and pear 

with a default translation proportion of 100%. So in MCRA, the food-as-eaten apple is converted to 

FruitMix (100%) and FruitMix is considered as the food-as-measured (TDS-food).  A conversion 

from apple-pie (food-as-eaten) to FruitMix (food-as-measured) is based on a recipe for apple-pie and 

a TDS composition for FruitMix. 

Another use of converting foods (as-eaten or as an intermediate step), is through the specification of 

so-called read across translations, e.g. for pineapple no measurements are found but by specifying that 

pineapple is converted to FruitMix (with a default proportion of 100%), the TDS sample 

concentration value of FruitMix will be used for pineapple (as-eaten or as ingredient). 

3.6 Market shares and brand loyalty 

Sometimes measurements of substances in food are available at a more detailed food coding level 

than consumption data. For example, measurements may have been made for specific brands of a food 

whereas the consumption survey did not record the brand. MCRA allows to specify market share 

data for subtypes of a food (e.g. A$1, A$2, A$3 are three brands of food A), and to calculate acute 

exposure based on such market shares.  

For chronic assessments brand loyalty should be specified according to a simple Dirichlet model 

(Goodhardt et al.,1984). Technically, the Dirichlet model for brand choice needs nbrand parameters 

i (which should be positive real numbers). The average brand choice probability for each brand is 

i/S, where  iS  . By definition, the market shares mi should be proportional to the brand choice 

probabilities, and thus to the parameters i. Thus means that S, the sum of the alphas, is the only 

additional parameter that should be specified, and indeed this is the parameter that determines brand 

loyalty. S=0 corresponds to absolute brand loyalty, and brand loyalty decreases with increasing S. We 

define 
1)1(  SL as an interpretable brand loyalty parameter, where now L = 0 and L = 1 

correspond to the situations of no brand loyalty and absolute brand loyalty, respectively.  

Given empirical or parametric distributions of consumption and concentration values, the algorithm 

for chronic exposure assessment now operates as follows: 

1. Simulate consumptions for a large number n of individuals. 

2. Simulate n selection probabilities from the Dirichlet distribution 

3. For each individual, simulate d brand choices from a multinomial distribution using the individual 

specific selection probabilities from step 2. 

4. For all individuals and days simulate values from the appropriate concentration distribution. 

5. Multiply consumption with concentration to obtain exposure.  

3.7 Supertypes 

Sometimes measurements of substances on food are available at a less detailed food coding level than 

consumption data. MCRA allows to use the concentration data of a supertype for all underlying food 

codes. However, this is not the default, and an explicit permission should be given to allow this 

feature. 

3.8 Maximum Residue Levels 

Maximum residue levels are the upper legal levels of a concentration for substance residues in a food, 

e.g. pesticide, or feed based on good agricultural practices and to ensure the lowest possible consumer 

exposure. 

3.9 MCRA food code conversion algorithm 

Food codes are linked using a 7-step procedure. For each foods-as-eaten, the code is matched 

according to the following steps. 

1. Identical code: try to find the code in the Concentration values group (step 1). The algorithm 

checks whether the measurements on a food are all non-detect (< LOR) or not. For pessimistic 
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scenario’s, consider to proceed with foods with only non-detect measurements as well. This step 

is optional, see advanced settings if you want to use this. 

If successful, a food-as-measured has been found, and the current search stops. 

2. Processing link: try to find the code in the ProcessingFactors table (step 2a). If  successful, try to 

find find the code in the FoodTranslations table (step 3a) to correct for weight reduction or 

increase. 

Processing link wildcard match: try to find a wildcard match in the processing table (step 2b).  

Wildcard match codes consist of an initial string (startcode, may be empty), an asterisk (*), and 

possibly a processing part (-processingtype). * may be any string endcode (not containing a -) 

such that code equals startcodeendcode or startcodeendcode-processingtype. 

a. If code contains a processing part (-processingtype), then the wildcard match code should 

also end with -processingtype. Convert to the code specified in the field 

foodunprocessed, where endcode is substituted for any * in the new code. 

b. If code contains no processing part, then the wildcard match code should also contain no 

processing part. Convert to the code specified in the field foodunprocessed, where 

endcode is substituted for any * in the new code. 

If successful, restart at step 1 with the new code of the unprocessed food. 

3. Food translation link: try to find the code in the FoodTranslations table (step 3a). This may 

result in 1 or more food codes for ingredients, and the iterative algorithm will proceed with each 

of the ingredient food codes in turn. Try to find the code in the TDSFoodSampleCompositions 

table (column idFood), a default translation proportion of 100% is assumed. The iterative 

algorithm will proceed with a TDS food (column idTDSFood) sample (step 3b). Try to find the 

food in the ReadAcrossFoodTranslations table (column idFromFood), a default translation 

proportion of 100% for ‘idToFood’ is assumed (step 3c). If successful, restart at step 1 with each 

of the new codes of the ingredient foods, TDS foods or Read Across foods. 

4. Subtype link: try to find subtype codes, e.g. 'xxx$*' in the MarketShares table. In general, 

marketshares should sum to 100%. Foods with marketshares not summing to 100% are ignored in 

the analysis unless the checkbox ‘Allow marketshares not summing to 100%’ is checked. This 

step is optional, see advanced settings if you want to use this.  

If successful, restart at step 1 with each of the new codes of the subtype foods. 

5. Supertype link: try to find supertypes, e.g. 'xxx$yyy' is converted to 'xxx'. This step is optional, 

see advanced settings if you want to use this.  

If successful, restart at step 1 with the new code of the supertype food. 

6. Default processing factor 1: remove processing part (-xxx) of the code.  

If successful, restart at step 1 with the new code without processing part. 

7. Maximum residue limit: try to find the code in the MaximumResidueLimits table.  

If successful, the current search stops. If not successful, then stop anyway and the search is 

marked as failed food conversion. 
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4  Food classification: FoodEx2 
‘The collection and evaluation of data on levels of chemical occurrence or presence of biological 

agents in food and feed are important tasks of EFSA. By combining the data with information on food 

consumption allows for detailed intake and exposure estimates crucial to any food and feed safety risk 

assessment or nutrient adequacy analysis. The EU Member States provide an increasing volume of 

data to EFSA and other European bodies. To provide a common link to all the diverse food and feed 

databases, a system for the unique and universal identification and characterisation of food and feed 

items is essential. 

EFSA has developed a preliminary standardised food classification and description system called 

FoodEx2 (version 2 of the EFSA Food Classification and Description System [FCDC] for exposure 

assessment). The system consists of descriptions of a large number of individual food items 

aggregated into food groups and broader food categories in a hierarchical parent-child relationship. 

Central to the system is a common ‘core list’ of food items or generic food descriptions that represent 

the minimum level of detail needed for intake or exposure assessments. More detailed terms may exist 

in addition to the core list and these are identified as the ‘extended list’. A parent-child relationship 

exists between a core list food item and its related extended list food items. The terms of the core and 

extended list may be aggregated in different ways according to the needs of the different food safety 

domains. In the present version four hierarchies are proposed: three domain-specific and a general 

purpose one. Facets are used to add further detail to the information provided by the food list term. 

Facets are collections of additional terms describing properties and aspects of foods from various 

perspectives’. For more information visit: http://www.efsa.europa.eu/en/datex/datexfoodclass.htm. 

4.1 FoodEx2  in MCRA 

For MCRA, having a different set of food codes is in itself not a problem. That is, for MCRA, it does 

not matter how foods are coded, as long as they can be linked to consumptions and concentrations 

within an exposure assessment. What makes FoodEx2 different from other food coding systems is that 

it provides additional food hierarchies, food facets, and a combined food/facet coding system. Below 

follows a brief summary of these main features of the FoodEx 2 coding system from the perspective 

of exposure assessment using MCRA. 

4.1.1 Foods and food hierarchies 

FoodEx 2 contains different food hierarchy definitions and allows for creation of custom food 

hierarchy definitions. These hierarchies could, for exposure assessment, allow to assess intake or 

consumption data based on the groups defined by these hierarchies. 

 

Table 1shows a part of the FoodEx 2 Exposure Hierarchy exported from the FOODEX 2.0 Browser 

version 0.1.3. 

 

Code Level Name ParentCode Scopenotes 

A000J 1 Grains and grain-based products ROOT The category covers all … 

A000K 2 Cereals and similar A000J … 

A000L 3 Cereal and cereal-like grains A000K … 

A000M 4 Amaranth grain A000L … 

A000N 4 Buckwheat grain A000L … 

A000P 4 Barley grain A000L … 

… … … … … 

Table 1: Food hierarchy export from FOODEX 2.0 Browser version 0.1.3 

4.1.2 Facets and facet descriptors 

FoodEx 2 allows to provide supplementary details on specific aspects of foods by means of so-called 

facets and facet descriptors. Facets are collections of terms defining specific characteristics of food 

http://www.efsa.europa.eu/en/datex/datexfoodclass.htm
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from particular points of view and facet descriptors describe specific characteristics foods. For 

example, processing technology is a facet, and baking is a facet descriptor belonging to this facet. 

Currently, 26 facets are defined, containing in total 2172 descriptors (EFSA 2011b). 

Facets are also defined in a hierarchical system. For instance, cooking in fat (A07GR) and baking 

(A07GX) are  sub-items of the descriptor cooking and similar thermal preparation processes 

(A0BA1). 

Facets are coded as small strings that consist of a facet code and a facet descriptor code separated by a  

‘.’-character. For example, the facet code F28.A07GX holds 1) the facet code F28, which is the facet 

code for process technology, and 2) A07GX , which is the descriptor code for baking. 

Table 2 shows a part of the FoodEx 2 facet descriptor codes of the source facet (F01).  

 

Code Level Name ParentCode Scopenotes 

A04SF 1 Animals ROOT … 

A056H 2 Mammals (food source animal) A04SF … 

A056Z 3 Farmed / non-game mammals (food source animal) A056H … 

A057A 4 African buffalo (food source animal) A056Z … 

A057B 4 American buffalo (food source animal) A056Z … 

A057C 4 Buffalo  (food source animal) A056Z … 

A057D 4 Cape buffalo (food source animal) A056Z … 

A057E 4 Cattle (food source animal) A056Z … 

… … … … … 

Table 2: Facet descriptor export of the source facet (F01) from FOODEX 2.0 Browser version 

0.1.3 

Implicit facets 4.1.2.1 

Implicit facets are facets of a product that are already implied by the food product itself. Consider, for 

example, potato boiled (A011P), where boiling (A011P) is an implicit facet, because boiling is already 

implied by the product. 

According to EFSA (2011a)  ‘inclusion of implicit facets in the string recorded for each food database 

record is not encouraged’ and it is suggested to identify and record the implicit facet descriptors in a 

separate table. 

Foods as facets 4.1.2.2 

Foods and facet descriptors share the same unique alphanumerical coding system; in some cases, like 

characterising ingredient or sweetening agent food list elements may be used as facet descriptors. 

4.1.3 The FoodEx 2 coding system 

In the coding system, facets can be added to the primary food codes to provide supplementary detailed 

information of particular data records. The structure of the FoodEx 2 codes is: 

 

idFood#idFacet.idFacetDescriptor$idFacet.idFacetDescriptor$.... 

 

The code starts with the primary FoodEx2 food code. Then, when there are supplementary facets, the 

food code is followed by a ‘#’-character and the facets string. The facets string is constructed as a 

concatenation of the individual facets strings, separated by means of the ‘$’ character. 

As an example, consider the string A011P#F28.A07GL$F28.A07KQ which is composed of: 

 Food: A011P - Potato boiled 

 Facet 1: F28.A07GL - Process technology - Boiling  

 Facet 2: F28.A07KQ - Process technology - Freezing 

4.2 FoodEx2 in MCRA 

For MCRA, FoodEx 2 introduces the following points of attention: 
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 Reading and dealing with FoodEx 2 coded data sets 

 Reading and dealing with food facets 

 Reading and exploiting food hierarchy data 

4.2.1 Reading and dealing with FoodEx 2 codes 

All data entities that contain foods data are potentially affected by the introduction of FoodEx 2. In 

MCRA, the following data tables are adapted to allow for input of full FoodEx 2 food codes: 

 Foods 

 Consumptions 

 Concentrations 

For these tables, the food code is allowed to be the complete FoodEx 2 food code and automatically 

recognized as such. As an example, Table 3 shows how the FoodEx 2 coded consumptions should be 

provided to the system. 

On important note: the maximum field length of the food code is 50. This means that there is a 

maximum of five facets that can be specified for a food. 

 

Individual DayOfSurvey Food Amount FoodSurvey 

14233701 1 A011R# F28.A07GX 153.43 FS01 

18843004 1 A011R# F28.A07GX 125.23 FS01 

34025701 1 A011R# F28.A07GX 153.6 FS01 

14720005 2 A011P# F28.A07GX 105.00 FS01 

49174010 1 A011P# F28.A07GX 140.00 FS01 

62794010 1 A011P# F28.A07GX 67.00 FS01 

61392002 1 A011P# F28.A07GL$F28.A07KQ 104.72 FS01 

61281231 1 A011P# F28.A07GL$F28.A07KQ 104.72 FS01 

Table 3: Integrated coding of the facets in the consumed foods field of food consumptions. 

Implementation 

4.2.2 Reading and dealing with facets data 

Within MCRA, the following facets related aspects are accounted for:  

 Reading facets data 

 Dealing with facets 

 Facets in concentration data 

 Facets in food conversion 

 Using facets as processing factors 

 Using hierarchy data in the output 

Reading facets data 4.2.2.1 

To incorporate input of facets data in MCRA, two tables Facets and FacetDescriptors are introduced 

as optional tables of the Foods data group: 

 

Column name Key Required Type Size Description 

idFacet Yes Yes String 5 The id of the facet of this definition. 

Name No Yes String 200 The name of the facet. 

Table 4 Facets table definition of the Food data group. 

 

Column name Key Required Type Size Description 

idFacetDescriptor Yes Yes String 5 The id of the facet descriptor of this 

definition. 

Name No Yes String 200 The name of the facet descriptor. 

Table 5 FacetDescriptors table definition of the Food data group. 
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Within MCRA, the facets of FoodEx 2 coded foods, consumptions, and concentrations are 

automatically linked to the provided facets and facet descriptors. Also, the facet descriptor names are 

added automatically to the foods containing these facets. 

Dealing with facets 4.2.2.2 

The introduction of food facets allows for much more detailed specifications of consumption and 

concentration data. However, it introduces the problem of deciding on which level of detail the 

exposure assessment should be performed. 

That is, should concentration models be generated on the level of foods-without-facets or on the level 

of foods-with-facets? E.g., should the concentrations of clementine peeled (A01CE#F28.A07LC) and 

clementine unprocessed (A01CE#F28.A0C0S) be modelled separately or should one model be 

constructed for clementine (A01CE)? Treating all clementine’s as equal may yield over-simplified 

conversions, whereas treating all separately may lead to many concentration models based on only 

few measurements. 

In MCRA, no implicit grouping of concentrations of equal foods with different facets is applied. If 

concentrations are provided for both clementine peeled (A01CE#F28.A07LC) and clementine 

unprocessed (A01CE#F28.A0C0S), then these are modelled separately. 

Another question is whether the order of the facets is relevant or not. E.g., is 

A0BYV#F02.A06GF$F03.A06HY the same as A0BYV#F03.A06HY$F02.A06GF? 

Regarding this matter, MCRA considers the facet order to be important. I.e., 

A0BYV#F02.A06GF$F03.A06HY is not the same as A0BYV#F03.A06HY$F02.A06GF. 

Facets in food conversion 4.2.2.3 

For conversion of foods-as-eaten to foods-as-measured, MCRA considers foods with different facet 

strings as different foods. I.e., there is no implicit conversion of foods-with-facets to foods-without-

facets and also the order of the facets is important. 

However, as it is realistic to convert food-with-facets to the base food without facets, an additional 

(explicit) conversion step remove-all-facets is added that converts foods with facets to the base foods. 

I.e., the action is “remove all”. There is no conversion step for “stripping off one facet at a time”. The 

reason for this is that there is no good way of deciding which facet to strip off first. This new 

conversion step is somewhat equivalent to the already existing default processing conversion step 

(step 6), and is therefore implemented as step 6b of the conversion algorithm. 

Particular rules followed by this step: 

 Conversion of food-with-facets to food-without-facets. 

Using facets that reveal processing data 4.2.2.4 

Facets containing processing information, such as part-consumed-analysed (F20) and processing 

technology (F28) could be integrated with processing data. As an example, consider clementine peeled 

(A01CE#F28.A07LC). This could be linked to clementine (A01CE), with processing type removal of 

external layer (A07LC). Linking to processing data could be achieved by entering processing data 

using the facet codes. 

As an alternative to the current processing factor tables, a facet-based processing factors table is 

defined for processing facets. That is, the codes for food processed and unprocessed are implicitly 

defined for FoodEx 2. 

 

FacetCode Compound FoodCode Proc 

Nom 

Proc 

Upp 

ProcNom 

UncUpp 

ProcUpp 

UncUpp 

A07LC CompoundX A01CE 0.5 0.6 0.05 0.06 

F28.A07GV CompoundX A0BY 0.2 0.1 0.03 0.04 

Table 6: Example of a MCRA processing factors table using FoodEx 2 foods and facets codes. 
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Note that in the example, the facet code could be specified as the full facet code, or just the code of 

the facet descriptor. 

As a more elaborate example consider 

 

French fries from cut potato (A0BYV#F02.A06GF$F03.A06HY$F04.A00ZT$F28.A07GR) 

 

For this food code, the substring of the processing facet is extracted from the list of facets. 

 

A0BYV#F02.A06GF$F03.A06HY$F28.A07GR$F04.A00ZT 

 (processing facet link A07GR) 

A0BYV#F02.A06GF$F03.A06HY$F04.A00ZT 

 

In MCRA, a table FacetProcessingFactors is introduced that allows for specification of processing 

factors by means of facets. This table has the following structure: 

 

Column name Key Required Type Size Description 

idProcessingType Yes Yes String 5 The facet code of this 

processing factor definition. 

May be specified as full facet 

code, i.e., facet code plus facet 

descriptor code, or as the facet 

descriptor code. 

idFood Yes Yes String 200 The food code. 

idCompound Yes No String 50 The compound for which this 

processing factor is defined. 

Nominal No Yes Double  Nominal value (best estimate 

of 50th percentile) of 

processing factor (defines 

median processing factor) 

Upper No Yes Double  Upper value (estimate of 95th 

percentile or “worst case” 

estimate) of processing factor 

due to variability 

NominalUncertaintyUpper No Yes Double  Upper 95th percentile of 

nominal value (Nominal) due 

to uncertainty. A standard 

deviation for uncertainty of the 

nominal value (Nominal) is 

derived using the nominal 

value (Nominal) and upper 

95th percentile 

(NominalUncertaintyUpper). 

UpperUncertaintyUpper No Yes Double  Upper 95th percentile of upper 

value (Upper) due to 

uncertainty. From the nominal 

value (Nominal), upper value 

(Upper) and the specified 

uncertainties of these values 

(NominalUncertaintyUpper 

and UpperUncertaintyUpper, 

respectively) the degrees of 

freedom of a chi-square 

distribution describing the 

uncertainty of the standard 
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deviation for variability is 

derived. 

Table 7 Table FacetDescriptors of the Food data group. 

 

The integration with the food conversion algorithm is as follows: Conversion step 2 (processing) is 

extended with a step 2c (processing facet) that attempts to match facets of a food code to processing 

data provided in the processing facets table. The following important rules are followed: 

 Processing factors can be defined for base-food-code/facet-code combinations and translate as 

food-with-processing-facet to food-without-processing-facet. 

 If multiple processing facets are present in the food-as-eaten code, then the last processing facet is 

used first for conversion. 

 Facet processing factors can be specified using the full facet code (i.e., facet-code plus facet-

descriptor-code) or just the facet descriptor code. If both are specified for the same food, the full 

facet code is used. 

 Facet processing factors can be defined compound-specific, and non-compound-specific. 

Processing factors that are defined compound-specific always precede non-compound specific 

processing factors. 

 Processing factors defined by a food-processed/food-unprocessed combination precede processing 

factors defined through facets. 

Weight reduction factors for processing factors defined for facets should be included in the food 

translation table and should match exactly. 

4.2.3 Reading and dealing with food hierarchy data 

Within MCRA, the following hierarchy related aspects are accounted for:  

 Reading food hierarchy data 

 Using hierarchical data for conversion of foods 

 Using hierarchy data in the output 

Reading food hierarchy data 4.2.3.1 

A new data group named Food hierarchy is added. In this group, a new table FoodHierarchy is 

proposed for input of food hierarchies. This table has the following structure: 

 

Column 

name 

Key Required Type Size Description 

idFood Yes Yes String 50 The id of the food/node of this definition. 

idParent Yes No String 50 The parent of the food of this definition. 

Table 8: Proposed new table definition: table FoodHierarchy of the new data group Food 

hierarchy. This table contains food hierarchy node-definition records that reflect a hierarchical 

structure. For foods that are not in this list as idFood, it is implicitly assumed that these foods 

are root items. 

Note: It is common practice to describe hierarchies using tree structures. Here, the elements of the tree 

are named nodes, the lines connecting the nodes are named branches, and nodes without children are 

leaf nodes/end-nodes. This terminology is also used throughout the remainder of this document. 

Using food hierarchies for food conversion 4.2.3.2 

The introduction of the hierarchy structure allows for integration with step 4 and step 5 of the food 

conversion algorithm; the subtype and supertype linking steps. That is, when no concentration data is 

found for a certain product, the concentration data of a (according to the hierarchy) related product 

could be used.  

In MCRA, the supertype conversion step also contains a hierarchy-supertype step based on the food 

hierarchy. 

Supertype link (step 5): 
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a) Supertype: Try to find supertypes base on ‘$’-coded strings, e.g., ‘xxx$yyy’ is converted to ‘xxx’ 

b) Hierarchy-supertype: try to find the supertype of the current food based on the food hierarchy 

(i.e., convert the current food to its parent). 

Note 1: the supertype conversion step is optional and should be specified in the conversion settings 

panel. 

Note 2: the hierarchy-supertype step only applies for foods-without-facets. The reason for this is that 

for the conversion, the base type of a food-with-facets can be considered as a better conversion 

candidate than the parent food with the same facets. 

Using hierarchy data in the output 4.2.3.3 

Food hierarchy information could be used in presentation of various tables of the output of MCRA. 

That is, in the tables in which foods data is presented, these records could be grouped based on the 

hierarchy and/or a tree-like display can be built for the presentation of this data. Tables that are 

candidate for being extended are, for example, the input data tables foods-as-eaten/foods-as-measured 

and the exposure by food-as-eaten/food-as-measured output tables. 

 

Summarizing over the food hierarchy is many cases not a straightforward task. Consider, for instance, 

the statistic number of consumption days given the artificial hierarchy of Citrus Fruits containing two 

child-nodes Mandarin and King Mandarin: the number of consumption of Citrus Fruits is not “just” 

the sum of the consumption day of Mandarin and King Mandarin. 

A difficulty for summarizing based on a hierarchy arises when a node contains both data and child-

nodes with data. E.g., concentrations are defined on the level of Citrus Fruits and on the level of 

Mandarin. In this case, the hierarchy view should ideally summarize for both Citrus Fruits as data 

record and Citrus Fruits as summary node. 

An additional complication is the status of facet-coded foods within the hierarchy. In a hierarchical 

view, foods-with-facets should ideally be added to their base-foods for visualization. 

 

In MCRA, an alternative view (treetable) is added that can display hierarchical data. This alternative 

view is used to present a hierarchical view based on the foods hierarchy for the consumption input 

summary tables food as eaten and food as measured. The data summary methods for these tables are 

updated such that the data is also summarized per hierarchy-node. 

 

Figure 3 Hierarchy view for the foods as eaten input summary table. 

If a node contains both data and a child record, then this node is split-up in two nodes: a summary 

node that summarizes the data of the node and all of its child nodes, and a data record with the string 

“(unspecified)” added as a child of this summary node. See Figure 3 for an example (Citrus Fruits 

versus Citrus Fruits (unspecified)). 

In MCRA, foods-with-facets are added as child nodes of the foods-without-facets  
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5  Consumption data and modelling 
Twenty-four hour dietary recall data are stored in table Consumptions. For an acute exposure 

assessment, the interest is in a population of person-days, so one day per individual may be sufficient. 

For chronic exposure assessments, the interest is in a population of person, so preferably two or more 

days per individual are needed.  

Table FoodSurvey is used to specify the number of days of the survey (obligatory field 

NumberOfSurveyDays).  

Table Individuals lists individual id’s and characteristics like gender, age, body weight and/or 

sampling weight. If the number of survey days varies between individuals, field 

NumberOfSurveyDays can be used to overrule NumberOfSurveyDays from table FoodSurvey.  

 

In acute exposure assessments, importance sampling is used to sample some individuals more 

frequently than others based on given sampling weights. The resulting set of individual days is 

weighted and approximates the true population of individual days. In MCRA, importance sampling is 

applied for a specified number of Monte Carlo iterations, typically 100.000. Optional is to take the 

data as such,  statistical sampling weights enter all calculations where weighing is involved e.g. the 

estimation of percentiles or summary statistics of foods and compounds. In chronic exposure 

assessments, sampling weights enter the simulation as statistical weights in regression and variance 

components.  

 

MCRA does not implement consumptions assessments. However, by introducing a dummy compound 

with concentration value 1, the estimated distribution is the result of consumption patterns only. 
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6  Concentration data and modelling 
MCRA models concentrations of substances or compounds independently for each food. In 

cumulative assessments the modelling is in principle also independent for each compound, but there is 

an option to correlate the concentration distributions of compounds in the same cumulative 

assessment group. 

 

A basic distinction is between using the empirical concentration data (empirical model) or fitting a 

statistical model to the concentration data (parametric model).  

6.1 Sample-based or tabulated concentration data, focal food data, total 

diet studies 

The recommended way to enter concentration data in MCRA is to report a list of analysed samples 

for all measured foods specifying the analytical method, and to report separately all positive values 

found in specific samples. For each sample the date and location of sampling can be specified. For 

each analytical method it should be specified which compounds it can analyse. MCRA follows 

exactly the EFSA Guidance (pp.56-58) for cumulative assessments. This implies a sample-based 

approach, i.e. the EFSA method considers a collection of samples on which all substances are 

measured (there may be missing values in which case there is an imputation procedure based on the 

measured residues in the same sample collection). 

 

Alternatively, concentrations can be specified as tabulated concentrations, specifying for each food 

and compound (and possibly sampling location and period) a list of concentration values together 

with their absolute frequency. This way of entering data has the disadvantage that the co-occurrence 

of compounds is not recorded (which could be a problem in cumulative assessments). 

 

In some assessments one food-as-measured is of special interest, and concentration data for this focal 

food have to be combined with concentration data for other foods from a background (e.g. 

monitoring) database. Examples are the approval scenario, MRL setting scenario, authorisation 

scenario and high-residue event scenario as identified in EFSA (2012). MCRA has an option to 

replace sample-based food concentration data for a specified focal food with concentration data in a 

separate data table. Note that the entire collection of samples from the Concentration data group 

(typically monitoring data) are replaced by the collection of samples from the focal food data 

(typically field trial data). So in the case of cumulative assessments the assumption is that the focal 

food data are representative for the population of the respective commodity.  

For Total Diet Studies (TDS), the food-as-measured is represented by a TDS food sample which is 

composed of food subsamples. In a TDS study, the selection of foods that in the end constitute the 

TDS food samples, is based on national consumption surveys. Ideally, the selection covers 90-95% of 

the foods found in the dietary survey. The selected foods that represent the diet for a specific target 

population are collected, prepared as consumed and related foods pooled prior to analysis. The 

exposure is based on whole diets rather than on raw agricultural commodities and results in a more 

realistic measure of exposure to substances. 

6.2 Limit of Reporting and non-detects 

A complication in concentration modelling occurs if results are reported as being below a limit. 

Different names may be used for such a limit, e.g. limit of detection or limit of quantification. For the 

purpose of exposure assessment it is only relevant whether results are reported as a positive value or 

as a non-detect, therefore we refer to any limit as the Limit Of Reporting (LOR), and any result 

reported as ‘<LOR’ is termed a non-detect. The value of LOR should always be known for the 

particular analytical method used.  

 

Non-detects are a very common phenomenon for some classes of substances like pesticides. Non-

detects can be handled by replacing them with a given value (imputation), or by incorporating them 
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in a parametric model. In the imputation approach, non-detects (values reported less than LOR) can be 

replaced in simulations by any value between 0 and LOR * constant.  

6.3 Agricultural use and food origin 

Sometimes it can be assumed that the majority of non-detects represent true zeroes. For example, this 

will be the case when the agricultural use of a pesticide on many crops is not allowed, or when no 

agricultural use exists of this pesticide together with another pesticide for which positive values have 

been found in the same food sample. In such cases a realistic model is to consider the concentration 

distribution as a mixture of a distribution of positive values (some of which may be non-detects) and 

a spike of true zeroes. 

 

In MCRA it is possible to specify agricultural uses (one pesticide, or a group of pesticides, in 

combination with a food), whether they are legal or not (legal is assumed if not specified), and if legal 

the relative frequency of use (100% is assumed if not specified). Agricultural uses can be given for 

specific locations (e.g. countries) and time periods. This can be done at multiple hierarchical levels, or 

even in general (not specifying location and period in the data is interpreted to indicate general default 

values).  

 

Data specifying percentages of food origin may be used in the simulations to assign a location and/or 

period of origin to each simulated food sample, e.g. 40% of bananas in the United Kingdom in 2009 

originated from Ghana, therefore a simulated banana sample will be considered to be from Ghana 

with 40% probability. Then data on agricultural use for this specified origin can be used to simulate a 

correct proportion of true zeroes for the compounds considered, leaving the remaining proportion of 

samples to be handled either by imputing a value, or sampling from a parametric model. 

 

If agricultural use data are available, then these data will specify the expected minimal proportion of 

true zeroes (p0) in the concentration dataset for each food-compound combination. Agricultural use 

information can be specific for e.g. the origin location of samples.The algorithm used is to find the 

origin of all samples in the concentration data set, and average the relevant p0 values over all samples. 

For a single origin, 𝑝0 = 1 − ∑ 𝑝𝐴𝑈,𝑗𝑗∈𝑢𝑠𝑒 , where pAU,j is the fraction of agricultural use for the 

specific combination j of compounds on a crop (agricultural use), and use is the set of agricultural 

uses in the crop where the relevant compound is included. If p0 is lower than the proportion of non-

detects (pND), then the surplus proportion of simulated sample concentrations (p0 - pND) is handled 

according to the specifications made for non-detects (either imputation or sampling from a parametric 

distribution). If p0 is higher than the proportion of non-detects (pND), then priority is given to the 

actual concentration data, and the value of p0 is adjusted to this lower value.  

6.4 Available concentration models 

6.4.1 Concentration Empirical model 

In the empirical (non-parametric) approach, simulated concentrations are sampled at random from the 

available data. Non-detects are handled by imputation. If agricultural use data have been used a 

proportion p0 / pND of non-detects is set as 0.  
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6.4.2 Concentration NonDetectSpike-LogNormal model 

A binomial model is used to estimate the proportion p of positive values (detects). This is just the 

proportion observed in the data (unless agricultural use data have been used to set a proportion of true 

zeroes). 

A lognormal model is fitted to the positive data. This provides estimates of µ and σ, which are the 

mean and standard deviation of the natural logarithm of the concentration. 

Simulated concentrations are a non-detect with probability pND = 1-p or a value sampled from the 

fitted lognormal distribution with probability p. Non-detects are handled by imputation. If agricultural 

use data have been used a proportion p0 / pND of non-detects is set as 0. 

Minimum requirements: at least two positive concentration values. See also paragraph 15.1 and 

further. 

 

6.4.3 Concentration NonDetectSpike-TruncatedLogNormal model 

A binomial model is used to estimate the proportion p of positive values (detects). This is just the 

proportion observed in the data (unless agricultural use data have been used to set a proportion of true 

zeroes in which case p is calculated on the remaining proportion). 

A truncated lognormal model, with LOR as the truncation limit, is fitted to the positive data, leading 

to estimates of µ and σ, which are the mean and standard deviation of the natural logarithm of the 

concentration. 

Simulated concentrations are a non-detect with probability pND = 1-p or a value sampled from the 

fitted lognormal distribution with probability p. Non-detects are handled by imputation. If agricultural 

use data have been used a proportion p0 / pND of non-detects is set as 0. 

Minimum requirements: at least two positive concentration values, all non-detects must have one 

LOR value. See also paragraph 15.1 and further. 

 

6.4.4 Concentration CensoredLogNormal model 

A censored lognormal model, with LOR as the censoring limit, is fitted to the data, both positives and 

non-detects. This provides estimates of µ and σ, which are the mean and standard deviation of the 

natural logarithm of the concentration. 

If agricultural use data are being used, then a proportion p0 / pND of non-detects will be excluded, 

where p0 will be lowered to pND if it would be higher.  

Simulated concentrations are sampled from the fitted lognormal distribution. If agricultural use data 

have been used, simulated concentrations are 0 with probability p0 or are sampled from the fitted 

lognormal distribution with probability 1-p0.  

Minimum requirements: at least one positive concentration value. See also paragraph 15.1 and further. 
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6.4.5 Concentration ZeroSpike-CensoredLognormal model 

A mixture distribution of a spike of true zeroes and a censored lognormal model, with LOR as the 

censoring limit, is fitted to the data (non-detects and positives). This provides estimates of p0, which is 

the proportion of true zeroes, and of µ and σ, which are the mean and standard deviation of the natural 

logarithm of the concentration. 

Simulated concentrations are 0 with probability p0, and are sampled from the fitted lognormal 

distribution with probability 1-p0.  

Minimum requirements: at least one positive concentration value, no agricultural use data for the 

food-compound combination (which directly specify p0, therefore it should not be estimated from the 

data). See also paragraph 15.1 and further. 

 

6.4.6 Concentration Bayesian ZeroSpike-CensoredLognormal model (obsolete) 

A mixture distribution of a spike of true zeroes and a lognormal model is fitted to the data (non-

detects and positives). The model uses a data augmentation algorithm to account for the limited 

amount of information provided by the <LOR data when inferring the proportion of true zeroes, p0, 

and the mean and standard deviation of the natural logarithm of the concentration, µ and σ 

respectively. The uncertainty algorithm is external to MCRA. Example methods are Paulo et al. 

(2005). Simulated concentrations are 0 with probability p0, or sampled from the fitted lognormal 

distribution with probability 1-p0.  

Minimum requirements: at least one positive concentration value. Agricultural use data for the food-

compound combination can be used to specify a prior distribution for p0.  

6.4.7 Concentration NonDetectSpike-MRL model 

This model simply takes values specified in an input table as Maximum Residue Limit (MRL) to be 

used for the proportion of positive values in the concentration dataset, and can be used to force the use 

of a pessimistic value. 

6.4.8 Concentration Summary Statistics model 

For this model, no individual measurements on raw agricultural commodities are needed. The final 

estimates of µ and σ are simply provided or pooled or estimated using e.g. a coefficient of variation. 

Specific use of this model is found in Total Diet Studies. In general, each TDS food sample is 

prepared only once, yielding one measurement for a TDS food sample. The variability of the 

underlying distribution is unknown. However, a rough guess can be made using the e.g. coefficient of 

variation of the subsamples (in general raw agricultural commodities) that compose the TDS food 
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sample. The estimated standard deviation is calculated as a pooled estimate using the coefficient of 

variation and the count of each subsample in the TDS food.  

6.5 Choice of concentration models 

For each food-compound combination there is a choice of model. One option is to choose the same 

model for all food-compound combinations. For example, 

 The EFSA (2012) basic optimistic model is to use empirical sampling, and to impute non-detects 

by 0.  

 The EFSA (2012) basic pessimistic model is to fit a NonDetectSpike-LogNormal model, and to 

impute non-detects by LOR.  

 Test Tiers 1 and 2 are experimental models and are described in Appendix . 

 

Parametric models have minimum data requirements, or the fitting of the model may fail for technical 

reasons in case of a severe lack-of-fit. MCRA uses a fall-back scheme to a simpler model if a model 

cannot be fitted: 

 If the ZeroSpike-CensoredLognormal model fails, then try the CensoredLognormal model. 

 If the CensoredLognormal model fails, then try the NonDetectSpike-Lognormal model. 

 If the NonDetectSpike-TruncatedLognormal model fails, then try the NonDetectSpike-Lognormal 

model. 

 If the NonDetectSpike-Lognormal model fails, then use the Empirical model. However, for the 

EFSA basic pessimistic model the first fall-back option is NonDetectSpike-MRL. 

MCRA will try to fit the specified default model to all combinations. If a model cannot be fitted for 

technical reasons, a simpler model will be fitted according to the scheme above.  

In the EFSA basic pessimistic model, the cumulative equivalent concentration values are fitted using 

the NonDetectSpike-Lognormal model. 

 

A second option is to choose a model for each specific combination of food and compound. For this, 

MCRA provides a graphical overview of available concentration data for each combination. As a 

starting point a default model can be chosen and MCRA will try to fit this model to all combinations. 

If a model cannot be fitted for technical reasons, a simpler model will be fitted according to the 

scheme above. After this, all available models can be fitted for any desired food-compound 

combination, and a model can be selected for use in the simulations. 

6.6 Maximum rank correlation 

In a cumulative exposure assessment, MCRA offers the possibility to do a sensitivity analysis by 

ranking the sampled concentrations within co-occurrence patterns for substances within the same 

cumulative assessment group. 

For e.g. three substances, 2
3 
= 8 patterns of co-occurrence exist. The relevant concentration patterns 

may be represented by (1,1,0), (1,0,1), (0,1,1), (1,1,1), where indicator 1 and 0 denote a vector of 

positive or zero concentrations, respectively, for the 1
th
, 2

nd
 en 3

rd
 substance. Within each pattern, 

concentrations per substance are ordered, such that high concentrations are more likely to occur 

together on the same food. The option Maximum rank correlation is not available when screening and 

the two-step approach for large CAGs (see paragraph 9.1 ) is applied. 
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7  Acute exposure assessment 
In an acute exposure assessment, the short term exposure to a substance or group of substances is 

estimated. The interest is in the distribution of individual day exposures and derived statistics like the 

fraction of days that exceed an intake limit or acute reference dose (ARfD). 

 

The basic model for the exposure to a compound in an acute exposure assessment is: 

i
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where yij is the intake by individual i on day j (in microgram substance per kg body weight), xijk is the 

consumption by individual i on day j of food k (in g), cijk is the concentration of that substance in food 

k eaten by individual i on day j (in mg/kg), and bwi is the body weight of individual i (in kg). Finally, 

p is the number of foods accounted for in the model. Within parenthesis, the default unit definitions 

are assumed, but decimal multiples or submultiples of units are easily specified using the relevant 

tables. 

 

In the exposure assessment, individual days enter the Monte Carlo sample using the inverse of the 

sampling weights wi when the number of MC iterations is > 0 (see table Individuals, field 

SamplingWeight).  

 

 

Figure 4: Example MCRA dietary exposure contributions 

7.1 Unit variability 

In the basic model for an acute exposure assessment, it is assumed that the concentration of the 

substance displays the variation of residues between units in the marketplace. In general, both 

monitoring data and controlled field trial data are obtained using composite samples and, as a result, 

some of the unit to unit variation is averaged out. The model for unit variability aims to adjust the 

composite sample mean such that sampled concentrations represent the originally unit to unit 

variation of the units in the compositie sample. 

 

MCRA offers three distributions to sample from. The beta distribution simulates values for a unit in 

the composite sample and requires knowledge of the number of units in a composite sample and of the 

variability between units. The lognormal distribution simulates values for a new unit in the batch and 
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requires only knowledge of the variability between units. The bernoulli distribution is considered as a 

limiting case of the beta distribution when knowledge of the variability between units is lacking and 

only the number of units in the composite sample is known. For the beta and lognormal distribution, 

estimates of unit variability are realistic (no censoring at the value of the monitoring residue) or 

conservative (unit values are left-censored at the value of the monitoring residue). For the lognormal 

distribution, sampled concentrations have no upper limit whereas for the beta distribution, sampled 

concentration values for a unit are never higher than the monitoring residue * the number of units in 

the composite sample. 

Variability between units is specified using a variability factor v (defined as 97.5
th
 percentile divided 

by mean) or a coefficient of variation cv (standard deviation divided by mean). Following FAO/WHO 

recommendations, for small crops (unit weight < 25 g), a default variability factor v = 1 is used, for 

large crops (unit weight ≥ 25 g), a variability factor v = 5 is used. For foods which are processed in 

large batches, e.g. juicing, marmalade/jam, sauce/puree, bulking/blending a variability factor v = 1 is 

proposed. See also paragraph 15.2 . 

7.1.1 Estimation of intake values using the concept of unit variability 

 For each iteration i in the MC-simulation, obtain for each food k a simulated intake xik , and a 

simulated composite sample concentration cmik . 

 Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit 

weight wuk, except for the last partial intake, which has weight   kikikikl wunuxxw 1 . 

 For the beta or bernoulli distribution: draw nuxik simulated values bcikl from a beta or bernoulli 

distribution. Calculate concentration values as cikl = bcikl * cmik, max = bcikl * cmik * nuk = svfikl * cmik, 

where svfikl is the stochastic variability factor for this simulated unit, i.e. the ratio between 

simulated concentration cikl and the simulated composite sample concentration cmik. Sum to obtain 

the simulated concentration in the consumed portion: 

ik

nux

l

ikliklik xcwc
ik





1

 

 For the lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal 

distribution with (optional) a biased mean  ikcmln   or (default) unbiased mean 

 ikcmln  - ½ 
2
 and standard deviation . Calculate concentration values as cikl = exp(lcikl) = 

svfikl * cmik, where svfikl is the stochastic variability factor for this simulated unit, i.e. the ratio 

between simulated concentration cikl and the simulated composite sample concentration cmik. Back 

transform and sum to obtain the simulated concentration in the consumed portion:  

      ik

nux

l

ikliklik xcwc
ik





1

 

 

For cumulative exposure assessments, a sensitivity analysis may be performed by specifying a full 

correlation between concentrations from different substances on the same unit. As a result, high (or 

low) concentrations from different substances occur together on the same unit. In MCRA, for each 

unit the random sequence is repeatedly used to generate concentration values for all substances. 

7.2 Processing 

Concentrations in the consumed food may be different from concentrations in the food as measured in 

monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. 

In general, we assume the model: 

 ijkkijk cfcpos   

where cijk is the concentration in the raw food, and where fk is a factor for a specific combination k of 

food as measured and processing.  
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For fixed processing factors, fk = fk,upper, where fk,upper is typically some sort of central value from an 

experimental study. For distribution based processing factors, fk is sampled from a normal 

distribution. The first two moments are defined through the specification of fk,nominal and fk,upper. 

See also paragraph 15.3 .  

The processing correction factor is introduced to correct for double counting the effects of chemical 

alteration and weight change e.g. for a dried food with a consumption of 100 gram which is translated 

to 300 gram raw agricultural commodity, the correction factor is 3. 

7.3 Acute exposure as a function of covariates 

In MCRA, acute exposure values may be modelled as a function of covariates. The modelling is 

restricted to main effects models, additive models and/or interaction models including one continuous 

and/or one discrete covariate at the same time. Continuous covariates may be modelled by a 

polynomial function. The order of the polynomial allows for nonlinear effects, starting from a linear 

relation (one degree of freedom), quadratic (two degrees of freedom) up to higher order polynomials. 

To determine the optimal number of degrees of freedom, likelihood ratio tests are used to compare the 

fit of two adjacent models. MCRA can automatically select the best fitted model, starting from a full 

model (backward selection) or starting from a empty model (forward selection). To decide on the 

effect of a qualitative covariate, fit alternative models and perform a likelihood ratio test using the 

log-likelihoods as shown in the output (Mood et al., 1974; Snedecor et al., 1980) 

For an acute exposure assessment with covariates, two models are available, the betabinomial-normal 

(BBN) model and the logisticnormal-normal (LNN0) model. See also paragraph 15.6 . 
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8  Chronic exposure assessment 

8.1 Introduction 

In a chronic exposure assessment, the main interest goes to the fraction of individuals with a usual 

intake per day higher than an intake limit e.g. the acceptable daily intake (ADI). Usual intake is 

defined as the long-run average of daily exposure to a substance or group of substances by an 

individual. Usually, for an individual, dietary recall data are available on 2 (or more) consecutive 

days. We assume an equal number of days for each individual, unless specified differently in table 

Individuals. 

 

For a chronic exposure assessment the available data are used to calculate exposures per person-day 

(daily intake): 
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where yij, xijk and bwi are defined as before but now concentrations of the substance found in food k 

enter the model as the estimated mean value ck . 

 

Using the person-day intakes MCRA uses one of the following models to calculate the distribution of 

usual intake at the person level:  

1) the observed individual means (OIM) model; 

2) the logisticnormal-normal model, in a full version that includes the estimation of correlation 

between intake frequency and amount (LNN), and in a simpler version without this estimation 

(LNN0); 

3) the betabinomial-normal (BBN) model; 

4) the discrete/semi-parametric model known as the Iowa State University Foods (ISUF) model. For 

this model, an equal number of days per individual is assumed. 

 

In modelling usual intake, two situations can be distinguished. Foods are consumed on a daily basis or 

foods are episodically consumed. For the logisticnormal-normal model and the betabinomial-normal 

model, the latter requires fitting of a two-part model, 1) a model for the frequency of consumption, 

and 2) a model for the intake amount on consumption days. In the final step, both models are 

integrated in order to obtain the usual intake distribution. For daily consumed foods, fitting of the 

frequency of consumption is skipped and modelling resorts to fitting the model to daily intake 

amounts only. Note that the distinction between BNN, LNN and LNN0 disappears and modelling will 

give equivalent results. 

8.2 Model based and model assisted 

Following Kipnis et al. (2009), some of the models available in MCRA are extended to predict 

individual usual intakes. This model assisted approach has been added to BBN and LNN0 and may be 

a useful extension in evaluating the relationship between health outcomes and individual usual intakes 

of foods. In contrast, the estimation of the usual intake distribution in the general population is called 

the model based approach. Summarizing, we get Table 9: 

 

model based approach  model assisted approach 

 observed individual means (OIM) 

betabinomial-normal (BBN) betabinomial-normal (BBN) 

logisticnormal-normal without correlation 

(LNN0) 

logisticnormal-normal without correlation 

(LNN0) 

logisticnormal-normal with correlation (LNN)  

Iowa State University Foods (ISUF)  
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Table 9: model based and assisted approach available for chronic exposure models 

The model assisted approach builds on the proposal of Kipnis et al. (2009), but is modified to ensure 

that the population mean and variance are better represented. The method is based on shrinkage of the 

observed individual means (modified BLUP estimates) and shrinkage of the observed intake 

frequencies. The model-assisted usual intake distribution applies to the population for which the 

consumption data are representative, and automatically integrates over any covariates present in the 

model. Model-assisted intakes are not yet available for LNN, and when a covariable is modelled by a 

spline function of degree higher than 1. 

In case of a model with covariates the usual intake is presented in graphs and tables as a function of 

the covariates (conditional usual intake distributions).  

8.2.1 Observed individual means (OIM) 

The usual intake distribution for a population is estimated with the empirical distribution of individual 

means. Each mean is the average of all single-day intakes for an individual. The mean value for an 

individual still contains a considerable amount of within-individual variation. As a consequence, the 

distribution of within-individual means has larger variance than the true usual intake distribution and 

estimates using the OIM-method are biased, leading to a too high estimate of the fraction of the 

population with a usual intake above some standard. 

Despite its known tendency to over-estimate high-tail exposures, the OIM method is the method to be 

used in EFSA (2012) basic assessments. 

8.2.2 Betabinomial-Normal model (BBN) 

The Betabinomial-Normal (BBN) model for chronic risk assessment is described in de Boer et al. 

(2009), including its near-dentity to the STEM-II model presented in Slob (2006). See also paragraph 

15.5.2.1  

8.2.3 Logisticnormal-Normal model (LNN with and without correlation) 

An alternative to the betabinomial modelling of intake frequencies in BBN model is modelling these 

frequencies by a logistic normal distribution. In notation, for probability p: 
  

 logit(p) = log(p/1-p) = μi + ci 

 

where μi represents the person specific fixed effect model and ci represent person specific random 

effects with estimated variance component 
2 between. 

This model is referred to as the LogisticNormal-Normal (LNN) model. The full LNN model includes 

the estimation of a correlation between intake frequency and intake amount. This is similar to the NCI 

model described in Tooze et al. (2006). See also paragraph  15.5.2.3 and 15.5.2.2 . 

A simple and computationally less demanding version of the LNN method which does not estimate 

the correlation between frequency and amount is termed LNN0, where the ‘0’ indicates the absence of 

correlation. The models are fitted by maximum likelihood, employing Gauss-Hermite integration. See 

also paragraph 15.5.3 . 

 

For chronic models amounts are usually transformed before the statistical model is fit. The power 

transformation, given by y
p
, has been replaced by the equivalent Box-Cox transformation. The Box-

Cox transformation is a linear function of the power transformation, given by (y
p
-1)/p, and has a 

better numerical stability. Gauss-Hermite integration is used for back-transformation. See also 

paragraph 15.4 . 

8.2.4 Discrete/semi-parametric model (ISUF) 

Nusser et al. (1996) described how to assess chronic risks for data sets with positive intakes (a small 

fraction of zero intakes was allowed, but then replaced by a small positive value). The modeling 

allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others 
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with respect to their consumption habits. However, a disadvantage of the method was the restricted 

use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or 

diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes 

became feasible by modeling separately zero intake on part or all of the days via the estimation of 

intake probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a discrete/semi-

parametric model is implemented allowing for zero intake and heterogeneity of variance following the 

basic ideas of Nusser et al. (1996, 1997) and Dodd (1996). This implementation of the ISUF model 

for chronic risk assessment is fully described in de Boer et al. (2009). 

8.3 Model-Then-Add 

The traditional approach can be termed the Add-Then-Model approach, because adding over foods 

precedes the statistical modelling of usual exposure. MCRA 8.0 offers, as an advanced option, an 

alternative approach termed Model-Then-Add (van der Voet et al. 2014). In this approach the 

statistical model is applied to subsets of the diet (single foods or food groups), and then the resulting 

usual exposure distributions are added to obtain an overall usual exposure distribution. The advantage 

of such an approach is that separate foods or food groups may show a better fit to the normal 

distribution model as assumed in all common models for usual exposure (including MCRA’s BBN 

and LNN models). That this principle can work in practice was shown in previous work (de Boer et 

al. 2009, Slob et al. 2010, Goedhart et al. 2012), and a simulation model was developed and 

implemented in MCRA 7.1 to show how multimodal distributions can arise from adding unimodal 

distributions of foods that are not always consumed (Slob et al. 2010, de Boer and van der Voet 

2011). For specific cases involving separate modelling of dietary supplements and the rest of the diet, 

proposals have been made (Verkaik-Kloosterman et al. 2011). However, a practical approach to apply 

the Model-Then-Add approach to general cases of usual exposure estimation was still missing. 

Therefore a module in MCRA 8.0 was developed to implement such an approach based on a visual 

inspection of a preliminary estimate of the usual exposure distribution using the Observed Individual 

Means (OIM) method. 

 

The Model step 

At this stage of development the division of foods into a number of food groups is performed in an 

interactive process, where the MCRA user is presented with a visual display (see example in Figure 

5) which shows: 

1. The OIM distribution represented as a histogram, where each bar shows the frequency of 

exposures (summed over foods) of individuals in a certain exposure interval; each bar is 

subdivided according to the contributions of the individual foods contributing to those 

exposures (left panel of Figure 2). 

2. The contributions graph, where each of the bars in the OIM histogram is expanded to 100%. 

This graph allows a better view of the lower bars in the OIM histogram (right panel of Figure 

2). 

The visual display identifies the nine foods that contribute most to the total exposure; the remaining 

foods are grouped in a rest category to avoid identification problems because of too many colours. 

 

The user has now the possibility to select one or more foods and to split these from the main exposure 

histogram. A separate graph shows the OIM distribution for the split-off food or food group. The 

graphs for the main group (now called the rest group) are adapted to show the OIM distribution and 

the contributions for the remaining foods only (see Figure 6 upper two panels). This splitting-off can 

be repeated several times for other foods or food groups. In this way the user can try to obtain foods 

or food groups that show unimodal OIM distributions. If the result is not what is intended, a food or 

food group can be added again to the rest group. Per split-off food or food group the usual  

 

 



Reference Manual MCRA 8.2  - 31 - 

 

 
Figure 5. Left panel: OIM usual exposure distribution to smoke flavours via the different foods 

(excluding the zero exposures) in young children; right panel: Contribution of foods to exposures 

within each bar of the OIM distribution histogram. 

 

 

 

  
Figure 6. Result of a selection into two split-off groups and a rest group. The graph bottom left 

represents the exposure via a food group containing ‘Sausage, frankfurter’ and ‘Sausage, smoked 

cooked’. The graph bottom right represents the exposure via a food group containing ‘Sausage, 

luncheon meat’, Herbs, mixed, main brands, not prepared’, ‘Soup, pea’, ‘Ham’, and ‘Bacon’. The top 

graph represents the exposure via the rest group. 

 

 

exposure can be modelled using either BBN or LNN, with a logarithmic or power transformation. The 

rest group will always be modelled as OIM. It is possible that the rest group is empty, when the total 

exposure via the different split-off foods and /or food groups is modelled with BBN or LNN. 
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After a split-off selection has been made, the OIM distribution is summarised in terms of the defined 

grouping (Figure 7), and the usual exposure distribution per split-off food or food group is fitted 

according to the chosen modelling settings. 

 

 

 

 
Figure 7. OIM usual exposure distribution showing the contributions from the three food groups as 

constructed in Figure 6. 

 

 

The Add step 

Consumptions of foods may be correlated. In the traditional Add-Then-Model approach the Add step 

automatically reflects any correlations that are apparent in the consumptions at the individual-day or 

individual level. In the Model-Then-Add approach the estimated usual exposure distributions for 

different foods or food groups have to be combined to assess the total usual exposure. Two 

approaches are available for this: 

1. Model-based approach: adds independent samples from the usual exposure distribution per 

food or food group, ignoring any correlations in consumption; 

2. Model-assisted approach: adds the model-assisted, person-specific usual exposure 

estimates per food or food group, taking correlations in consumptions into account. 

Before the addition is made, in the model-based approach, model-based estimates of the usual 

exposure amounts distribution per food or food group are back-transformed values from the normal 

distribution assumed for transformed amounts per food or food group, and the model-based frequency 

distribution is sampled to decide if a simulated individual has exposure via the food or food group or 

not. Model-assisted estimates of the usual exposure distribution are back-transformed values from a 

shrunken version of the transformed OIM distribution, also done per food or food group, where the 

shrinkage factor is based on the variance components estimated using the linear mixed model for 

amounts at the transformed scale (van Klaveren et al. 2012). For individuals with no observed 

exposure (OIM=0) no model-assisted estimate of usual exposure can be made and a model-based 

replacement is used. 

 

The model-based approach was investigated in Slob et al. (2010) and performed surprisingly well, 

even if correlations in consumptions of foods were present. The model-assisted approach adds 

exposures at the individual level, and therefore retains effects of correlations between foods in the 

usual exposure distribution.  

 

MCRA 8.0 calculates both the model-based and model-assisted usual intake distributions (see Figure 

8). 
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Figure 8. Model-based (left) and model-assisted (right) estimated usual exposure distributions 

(excluding the zero exposures). 

 

8.4 Chronic exposure as a function of covariates 

The intake frequency and transformed intake amounts may be modelled as a function of covariates. 

MCRA allows one covariable and/or one cofactor.  

 

For frequencies:   

cofactor: logit(π) =  0l  

covariable: logit(π) =  0 +  1 f(x1; df) 

both:  logit(π) =  0l+  1 f(x1; df)  

interaction: logit(π) =  0l+  1l f(x1; df) 

 

For amounts: 

cofactor: transf(yij) =  0l + ci + uij 

covariable: transf(yij) =  0 +  1 f(x1; df) + ci + uij 

both:  transf(yij) =  0l+  1 f(x1; df) + ci+ uij 

interaction: transf(yij) =  0l+  1l f(x1; df) + ci+ uij  

 

where l=1…L and L is the number of levels of the cofactor,  yij , the intake amount, x1 is the 

covariable, f is a polynomial function with the degrees of freedom df, ci and uij are the individual 

effect and interaction effect, respectively. These effects are assumed to be normally distributed N(0, 
2 between) resp. N(0, 

2 within). The degree of the function is determined by backward or forward 

selection.  

In the output, the usual intake is displayed for a specified number of values of the covariable and/or 

the levels of the cofactor. 

8.5 Usual intake estimation when there are no replicated data 

When a chronic model LNN, LNN0 or BBN is applied to consumption data with just one day per 

person, MCRA asks for the input of a variance ratio for the amount model and a dispersion factor for 

the frequency model. These values can for example be taken from the output of similar exposure 

assessments of datasets with multiple days per person. 
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9  Cumulative exposure assessment 
In MCRA cumulative assessments can be performed if a Cumulative Assessment Group (CAG) is 

specified in terms of a list of compounds and corresponding Hazard Doses or Relative Potency 

Factors (RPFs) relating to a particular health effect. Cumulative exposure is expressed as equivalents 

of one of the compounds in the CAG, termed the reference or index compound. 

 

The occurrence and concentrations of compounds in the same samples may be correlated, which is of 

importance for acute exposure assessments (Note that chronic assessments only use mean 

concentration values). Theoretically, this could be modelled and fitted to datasets. However, in 

practical applications (regarding pesticide residues) the number of positive values is commonly too 

low to allow such detailed modelling. 

 

Ideally all samples have been measured for all compounds in the CAG (although part or all of the 

results may be non-detects). However, some samples may have missing values (MVs) because not all 

compounds in the CAG were analysed: in this case values can be imputed for the MVs. The 

imputation value may be zero, or a positive number drawn from a distribution.  

 

Imputing MVs with 0 is correct if it is assumed that measurements have not been made because it is a 

priori known that the sample will not contain the compound. This approach is used in the EFSA 

Guidance basic optimistic model for acute exposure assessments.  

 

In the EFSA Guidance basic pessimistic model for acute exposure assessments MVs in the data are 

imputed by sampling values at random from the distribution of concentrations as fitted on other 

samples. A pessimistic model is obtained by using the highest sampled values for imputing the MVs 

of samples which already are calculated to have a high RPF-weighted exposure based on the present 

values. MCRA implements the precise algorithm as documented in EFSA (2012). 

In MCRA, both EFSA Guidance basic models are denoted as a sample based approach. 

Figure 9: EFSA Guidance basic pessismistic model, sample based  

 

MCRA also implements custom methods including those developed in the EU Acropolis project. In 

the Acropolis model for cumulative exposure for each food-compound combination a choice from 

the available models is made, which may be based on visual inspection. In fitting the chosen 

distribution MVs are ignored. In the basic uncorrelated Acropolis model MCRA simulates a 

cumulative exposure by drawing values for all compounds in the CAG from the respective 

distributions, and then calculating the RPF-weighted sum. 

 

In addition, the distribution might be dependent on the presence of other compounds in this sample 

and/or on known patterns of co-occurrence of compounds. For example, it might be known that 

among triazole pesticides used on pineapple triadimefon is never combined with other compounds. In 

that case any pineapple sample on which triadimefon has been found cannot contain other 

compounds. And if no triadimefon has been found (either because it was not measured or because it 

was measured as ‘<LOR’), then there are two possibilities: either only triadimefon is present, or 

triadimefon is 0 but other compounds may be present.  
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To model this dependence additional data are needed about patterns of Agricultural use and their 

relative frequencies, which specify if and how often combinations of compounds can occur together in 

a sample. In MCRA this is modelled in a multivariate ZeroSpike model, which defines a mixture of 

2
p
 components (p is the number of compounds). In each component 0, …, p specific concentrations 

are 0, and the remaining concentrations follow a univariate distribution as selected earlier. In practice, 

only a minority of the 2
p
 components of the mixture distribution will be specified, and all non-

specified combinations will have probability 0%. If no data on Agricultural use are specified, MCRA 

assumes that all combinations are possible, so effectively the component where none of the 

concentrations are excluded has probability 100%, and the other 2
p
-1 components of the mixture 

distribution have probability 0%. 

 

When simulating cumulative exposures, MCRA will first draw an agricultural use pattern from the 

multinomial distribution specifying the 2
p
 (or less) components. This draw determines which 

compounds will have a zero concentration. For the remaining compounds draws are made from the 

respective univariate distributions as selected earlier. 

 

 

Figure 10: Acropolis model, non sample based 

 

9.1 Screening and the two-step approach for large CAGs 

A full Monte Carlo analysis can be unwieldy for large cumulative assessment groups (CAGs) and/or 

large number of foods or concentration data. An algorithmic approach was developed to handle large 

CAGs. Two unique features of MCRA are: (1) contributions to the exposure results can be seen both 

in terms of food-as-eaten (e.g. white bread) and foods-as-measured (e.g. wheat), and (2) a drill-down 

can be made into the exact foods and compounds contributing for simulated individuals or individual-

days in the upper tail. The number of combinations of simulation, compound, food-as-measured and 

food-as-eaten can be very large. To avoid memory problems with very large datasets, an additional 

optional modelling step, named Screening, was added to MCRA. Screening should be used if the data 

dimensions are too large for a direct analysis. Screening identifies risk drivers. A full analysis based 

on screened risk drivers will still retain all food/compound combinations in the exposure calculation, 

and will therefore produce exactly the same cumulative exposure distribution, and allow to see 

contributions of all compounds and all foods-as-measured. Details with respect to foods-as-eaten are 

however restricted to the risk drivers selected in the screening step. 

 

The two-step approach consists of: 

Step 1: Data screening and selection of risk drivers 

Run a simple analysis for each potential source/compound combination (SCC). Here source 

means the combination of food-as-eaten and food-as-measured, for example apple in apple 

pie. The screening is based on this combination, and not just foods-as-measured,  to avoid 

problems with potentially multi-modal consumption distributions as much as possible (see 

van der Voet et al. 2014). SCCs are also referred to as risk driver components. 

The screening step in MCRA implements a simple model that is applied to each SCC. The 

model calculates a percentile of interest in a distribution, consisting of a spike of zeroes (non-

consumptions), and a mixture of two lognormal distributions for the exposure related to non-

detects and positive concentrations, respectively. For more details see Appendix A. 
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SCCs (risk driver components) can be combined to measured source/compound combinations 

(MSCCs, risk drivers). For example APPLE/apple juice/captan and APPLE/apple pie/captan 

combine to APPLE/captan. 

MCRA has an interface which identifies the Top-N SCCs  (based on a chosen exposure 

percentile, e.g. p95) with an option to select N based on cumulative importance according to 

some criterion. Remark: Screening is performed before concentration modelling. Therefore 

there is no correction for processing factors at the screening stage. 

Step2: Full MC analysis 

Perform the standard MC to all combinations of compounds and foods, but restrict the stored 

information regarding foods-as-eaten to the SCCs selected in step 1.  

 

The screening method requires to specify: 

 Which percentile  to consider for each single Source-Compound Combination (SCC, potential 

risk driver component)  (default p95) 

 Which percentage of all exposures (according to the screening model) should be covered by 

the selected set of SCCs (default 95%) 

 How to impute non-detect concentrations (c < LOR)  in the screening step. The choice of a 

factor 0 (default) represents optimistic imputation, the choice of a factor 1 represents a 

pessimistic imputation. It may be noted that a factor 1 (pessimistic imputation) may select 

many SCCs (risk driver components)  with relatively high LORs and high RPFs, but with 

only nondetect measurements. Choosing a lower fraction, e.g. 0.25 can be useful if a more 

realistic method is sought. 

 

Based on limited experience with the EFSA test data, useful settings of these three screening 

parameters were found to be (95, 95, 0) in preparation for an EFSA optimistic run, and (50, 95, 0.25) 

in preparation for an EFSA pessimistic run. 

 

The screening can be performed interactively (click green button ‘Screen exposures’) , and the results 

will appear in a pop-up window: 

 
This screen shows in the upper left corner the screening distribution for the SCC with the overall 

highest percentile of interest (indicated by the green line). In the upper middle panel and the pie chart 

the SCCs are grouped into risk drivers (MSCCs) in decreasing order of contributing to the exposures 

higher than  this reference exposure value. Clicking on a risk driver in the upper middle panel allows 

to zoom in on the risk driver components in the lower part of the screen. 
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In a full run the screening approach can also be performed, and the results will be used in the second 

step to allow a full analysis for large CAGs. 

 

The details of the statistical models for screening are described in Appendix 15.7 . 

9.2 Co-exposure 

Co-exposure of compounds is defined as the pattern of compounds occurring together on a single 

individual day. Co-exposure can enter the risk assessment through the use of mixtures of substances 

on a single food or by combining different food sources on a single day (through consumption). In 

MCRA, an overview is given of the numbers of compounds occurring together without specifying the 

specific compound combinations. In addition, some specific output is displayed for mixtures with the 

highest number of compounds occuring together and a summary of the most frequent mixtures of 

compounds occuring together in the analyis. This is both done for the total exposure distribution and 

the upper tail of the exposure distribution (see also chapter 11 ). 
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10  Aggregate exposure assessment 
Aggregate exposure assessments can be performed in MCRA when pre-calculated non-dietary 

exposure estimates are supplied. The user has flexibility to input either single deterministic non-

dietary exposure or probabilistic exposure estimates (this section describes variability in non-dietary 

intakes and 14.1.3.1 describes uncertainty analysis of non-dietary intakes). When including multiple 

non-dietary surveys it is possible to supply some with uncertainty/variability and others without 

variability/uncertainty according to the requirements and data availability. 

 

Non-dietary exposure estimates may be specified for multiple routes of exposure (dermal, oral and 

inhalation), for multiple compounds, and for multiple exposure sources. The multiple sources case 

will be relevant, for example, in modelling individuals taking part in various activities involving 

pesticide use or incidental exposures as a resident. Each non-dietary source is characterised in a 

particular user-selected or user-supplied ‘non-dietary survey’. Exposures are included for each 

compound separately in the multi-compound case because the combination with RPFs takes place 

after the aggregation with dietary sources. By default, exposures from separate non-dietary surveys 

(sources) are considered to be independent events, but as explained below correlations between 

compounds and/or activity types per individual can be represented if generated prior to uploading to 

MCRA. Examples are presented as case studies in Kennedy et al. (2013a) and R code to generate 

these examples is available for general use. 

10.1 Matched and unmatched aggregation 

To create aggregate exposure estimates, the non-dietary exposures can either be matched to specific 

individuals in the food survey or they can be randomly assigned. For example, if both dietary and 

non-dietary information is available for a known population of individuals, the user may switch 

‘matching on’ such that specific dietary and non-dietary estimates are aggregated for each individual 

in the food survey population. If matching is enabled, any non-dietary exposures that do not 

correspond to individuals from the food survey will be ignored (see Example 2 below), unless an 

individual is specified with id = General. In that case, the dietary individual should meet the criteria of 

the non-dietary survey, specified by the survey properties, to be assigned. 

 

If the non-dietary data relates instead to a population in which individuals have no corresponding 

records in the food survey, the user may choose to randomly assign the non-dietary exposures to the 

individuals from the food survey. This is the unmatched case. When multiple nondietary surveys are 

available, the options with or without  correlation are important (not relevant when matching is 

switched on). When option correlation is chosen, the exposure contributions of non-dietary 

individuals with identical id’s in different surveys are combined and allocated to a randomly selected 

dietary individual. When option without correlation is chosen, the nondietary exposures of randomly 

selected individuals from different surveys are combined and allocated to a dietary individual. The 

user may also define demographic criteria for the assignment (for each source of non-dietary 

exposure) to indicate that those exposures are relevant only to a defined sub-population. Only those 

individuals in the food survey who meet the criteria of the non-dietary survey will be assigned non-

dietary exposures from that source e.g. only males aged 18 to 65 (see Example 1 below). The simplest 

assessment consists of a single (deterministic) non-dietary exposure estimate which is assigned to all 

individuals in the food survey (idIndividual = General). This case, and more complex possibilities are 

illustrated below using hypothetical examples. 

10.2 Internal and external doses 

Non-dietary exposures may be represented as internal (absorbed) or external doses, with the 

interpretation inferred from the type of user input. Absorption factors are used to convert external 

doses to internal doses. If absorption factors are not specified, MCRA will assume that the supplied 

exposures are already internal doses (see Example 1 below). Absorption factors can vary between 

compounds and sources. For example, the absorption could be different when working with 

concentrates and dilutions. Thus, absorption factors may be specified for each compound and non-
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dietary survey in an assessment (see Example 2 below). For aggregation, the dietary exposure 

estimates will be converted, if necessary, to internal doses using the oral absorption factor for dietary 

exposure (which may be supplied by the user). 

 

The non-dietary exposures may be short term (acute) or longer term averages (chronic). The user must 

ensure that they supply appropriate non-dietary data for the type of exposure assessment they wish to 

conduct. For chronic assessments this means the non-dietary exposure is averaged over an appropriate 

time interval. 

 

Example 1: Deterministic cumulative (multi-compound) non-dietary exposure input, adult male 

sub-population. Internal dose. Unmatched case. 

 

 

idIndividual  idNonDietarySurvey idCompound Dermal Oral Inhalation 

General 1 011003001 10 5 17 

General 1 011003002 34 20 18 

General 1 011003003 56 43 19 

Table 10: NonDietaryExposures 

 

idNonDietarySurvey Description Location Date NonDietaryIntakeUnit 

1 BROWSE, acute, 

cumulative, 

operators 

York 09/10/2012 µg/day 

 

Table 11: NonDietarySurveys 

 

idNonDietary

Survey 

Individual

Property 

Name 

IndividualProperty

TextValue 

IndividualProperty

DoubleValueMin 

IndividualProperty 

DoubleValueMax 

1 Age  18 65 

1 Gender Male   

Table 12: NonDietarySurveyProperties 

In this example, there are exposure values for multiple compounds in the NonDietaryExposures table 

and the user has provided a NonDietarySurveyProperties table which specifies that the non-dietary 

exposures given in survey number 1 relate to males aged 18 to 65. 

 

When this assessment is performed, only those individuals whose property values fit the criteria in the 

NonDietarySurveyProperties table will receive the non-dietary exposures in survey 1. The use of 

idIndividual = General indicates that this is the default exposure. All individuals in the dietary survey 

meeting the criteria receive all exposures given in the 3 rows, corresponding to 3 compounds. The 

following should be noted: 

 There should only ever be 1 General entry in the dietary exposures table per compound, survey 

combination. 

 The property names and the values of any text properties must precisely match those given in the 

IndividualProperties and IndividualPropertyValues tables for this to work. 

 The minimum and maximum values for numeric properties are both inclusive boundaries. 

 

So in this example, all males aged 18 to 65 will receive the given exposures of all three compounds 

and the other members of the population will receive no non-dietary exposure. Note that example 1 

describes the unmatched case. 
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Example 2: Variability (but no uncertainty) in cumulative non-dietary exposure input (matched 

to dietary survey individuals). External dose. 

 

 

 

idIndividual  idNonDietarySurvey idCompound Dermal Oral 

5432 1 011003001 10 5 

5432 1 011003002 33 21 

5433 1 011003001 12 7 

5433 1 011003002 34 23 

5434 1 011003001 18 9 

5434 1 011003002 35 25 

5435 1 011003001 10 5 

5435 1 011003002 33 21 

Table 13: NonDietaryExposures 

 

idNonDietarySurvey Description Location Date NonDietaryIntakeUnit 

1 BROWSE, acute, 

cumulative, 

operators 

York 09/10/2012 µg/day 

 

Table 14: NonDietarySurveys 

 

idNonDietary 

Survey 

idCompound DermalAbsorption 

Factor 

OralAbsorption

Factor 

InhalationAbsorption

Factor 

1 011003001 0.1 1.0 1.0 

1 011003002 0.1 1.0 1.0 

Table 15: NonDietaryAbsorptionFactors 

 

In this example the non-dietary exposures are external doses (because table  NonDietaryAbsorption-

Factors has been supplied) and the non-dietary exposures are being specified explicitly for individuals 

in the dietary population. Switch ‘matching’  on to allow exposure variability to be specified at the 

individual level. For the purposes of illustration, the population is extremely small, consisting of only 

four individuals. The values in the idIndividual column of the NonDietaryExposures match those in 

the Individuals table (dietary population). 

 

It is not mandatory to specify exposures for every individual in the population. Those not included 

will simply receive a zero non-dietary exposure, unless there is also a default exposure value 

(‘General’  row(s) in the NonDietaryExposures table) and the individual matches the specified 

demographic criteria for the survey, as specified in the NonDietarySurveyProperties table. (In this 

example, a default exposure would apply to all individuals not listed in the NonDietaryExposures 

table because the NonDietarySurveyProperties table has not been used). 

 

There is variability between individuals in this example, but no uncertainty in exposure. Note that 

these data could also be used with matching switched off. This would be the same as treating the 

idIndividual values as generic individuals, so that each pair of exposure lines would be assigned at 

random to individuals meeting the criteria. 

 

Example 3: Variability (no uncertainty) in cumulative non-dietary exposure input (unmatched 

individuals). External dose. 
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idIndividual  idNonDietarySurvey idCompound Dermal Oral Inhalation 

ND1 1 011003001 10 5 17 

ND1 1 011003002 33 21 45 

ND2 1 011003001 12 7 18 

ND2 1 011003002 34 23 47 

ND3 1 011003001 18 9 19 

ND3 1 011003002 35 25 49 

ND4 1 011003001 10 5 17 

ND4 1 011003002 33 21 45 

Table 16: NonDietaryExposures 

 

idNonDietarySurvey Description Location Date NonDietaryIntakeUnit 

1 BROWSE, acute, 

cumulative, 

operators 

York 09/10/2012 µg/day 

 

Table 17: NonDietarySurveys 

 

idNonDietary

Survey 

Individual 

PropertyName 

Individual 

PropertyText

Value 

IndividualProperty 

DoubleValueMin 

IndividualProperty 

DoubleValueMax 

1 Age  50 65 

1 Gender Female   

Table 18: NonDietarySurveyProperties 

 

idNonDietary 

Survey 

idCompound DermalAbsorption 

Factor 

OralAbsorption 

Factor 

InhalationAbsorption

Factor 

1 011003001 0.1 1.0 1.0 

1 011003002 0.1 1.0 1.0 

Table 19: NonDietaryAbsorptionFactors 

This example is similar to example 2, except that the values in the idIndividual column of the 

NonDietaryExposures do not match those in the Individuals table. In this instance, ‘matching’ would 

not be an option, and the non-dietary exposures would be randomly assigned to individuals who meet 

the criteria in the NonDietarySurveyProperties table. (In fact for the same result rather than changing 

the values in the idIndividual column the NonDietaryExposures table from the previous example may 

be used with matching switched off). Exposures in the NonDietaryExposures table will be recycled if 

the number of exposure rows is less than the number of dietary records with which to aggregate 

exposures. 

 

Again, there is variability between individuals in this example, but no uncertainty in exposure. 

 

By allowing generic idIndividual values in this way, correlations between different sources (within 

individual) can be accounted for even in the unmatched case. If the same idIndividual value is used in 

different surveys, then the corresponding exposure values will be kept together and assigned to an 

eligible individual as a combined exposure. 

 

So for option matching switched of, it is relevant whether individuals are correlated or not. 
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In the following example, two nondietary surveys are available, per survey three individuals are 

specified. 

 

idIndividual  idNonDietarySurvey idCompound Dermal Oral Inhalation 

ND0 1 011003001 10 5 17 

ND1 1 011003001 23 21 45 

ND2 1 011003001 12 7 18 

ND0 2 011003001 34 23 47 

ND3 2 011003001 18 9 19 

ND4 2 011003001 33 16 35 

Table 20: matching switched of, with correlation or without. 

When a correlation is applied, the nondietary exposure for individual ND0 from survey 1 and 2 are 

combined and allocated to a dietary individual. For individual ND1, ND2, ND3 and ND4 just a single 

nondietary exposure is found and allocated to a dietary individual. 

When no correlation is applied, the exposure for individual ND0 from survey 1 is combined with one 

of the exposures of ND0, ND3 or ND4 from survey 2; exposure of ND1 from survey 1 is combined 

with one of the exposures of ND0, ND3 or ND4 from survey 2, etc. 

When the intention is to sample just one exposure for a dietary individual, specify per survey different 

codes, e.g. ND1, ND2, ND3 for survey 1, ND4, ND5, ND6 for survey 2 and apply correlation, or  

specify 6 different individual codes and just one idNonDietarySurvey. Then, options with or without 

correlation are irrelevant and sampling results are identical no matter which option is chosen. 

11  Mixture Selection 
The most common model of cumulative risk assessment is to focus on substances that belong to the 

same common assessment groups (CAG). Substances in such a group belong to the same chemical 

family and may or may not have a similar mode of action. In assessing the risk, possible interactions 

between substances are often ignored and, moreover, little information is available about synergistic 

effects at low doses. More information is needed about the combined effects of such substances, but it 

is impractical to investigate all possible mixtures, and therefore instruments are needed to select the 

most relevant compounds for further investigation. This selection should not only be based on the 

hazard (highest relative potencies) but also on the exposure of the population to these substances. The 

potential risk of being exposed to chemicals in a mixture depends on the food consumption patterns of 

individuals in a population. A regular diet can contain hundreds of substances, so the number of 

combinations of compounds to which an individual in a population is exposed can be numerous. 

Therefore, it is essential to identify the most relevant mixtures to which a population is exposed.  

 

In MCRA three approaches are available which may help to identify and select mixtures contributing 

to the exposure of a target population:  

 

1. qualitative approach: counting of co-exposure. To which combinations of compounds are 

individuals exposed? 

2. quantitative approach: maximum cumulative ratio (MCR). To what degree are mixtures 

more important than single compounds? 

3. quantitative approach: sparse non-negative matrix underapproximation (SNMU). What 

mixtures predominantly determine the underlying patterns in the exposure matrix (compound 

x person (day))? 
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Figure 11: Example of co-exposure distribution (from >1 compound per individual-day, red) 

super-imposed on the total exposure distribution (blue). 

 

11.1 Counting co-exposure 

In this qualitative approach, the number of combinations of compounds to which an individual is 

exposed are recorded. There is no cut-off level, the only criterion is the presence of a compound in the 

simulated daily diet or not. For an acute or short term exposure assessment, a simulated individual day 

is smallest entity to determine co-exposure. For a chronic or long term exposure assessment, co-

exposures are summarized at the individual level, e.g. co-exposure is determined combining all 

consumption days of an individual. In Table 21, an example for acute exposure is shown. 

 

compound day 1 day2 day 3 ... day n 

A    ...  

B    ...  

C    ...  

... ... ... ... ... ... 

Table 21: counting combinations of compounds in the exposure matrix:  for example, om day 1 

there is co-exposure to compounds A, B and C. 

 

For chronic exposure the data are summarised at the individual level. 

 

In the current implementation in MCRA the co-exposure counts are summarized in four tables: 

1. A table listing the frequencies of  compound  combinations grouped by the number of compounds. 

2. A table listing the exposures with the highest numbers of compounds. 

3. A table showing the most frequent unique combinations of compounds. 

4. A table showing the most frequent combinations of compounds which may be part of larger groups. 

11.2 Maximum Cumulative Ratio (MCR) 

Price and Han (2011) propose the Maximum Cumulative Ratio (MCR) which is defined as the ratio of 

the cumulative exposure received by an individual on an intake day to the largest exposure received 

from a single compound: 
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 MCR = Cumulative exposure/ Maximum exposure 

 

This MCR statistic is also picked up as a practical device in a recent JRC report (Bopp et al. 2015) to 

investigate cumulative exposure. If MCR is large, it is important to consider cumulative effects, if 

MCR is close to 1, the individual exposure will not be much different from a single-compound 

assessment. The MCR can therefore be interpreted as the degree to which the risk of being exposed is 

underestimated by not performing a cumulative risk assessment.  

 

The MCR statistic is implemented in MCRA for both the acute risk and the chronic risk cases. In the 

acute risk case the short-term (single-day) exposures are used, in the chronic case the long-term 

individual exposures (estimated by aggregating over the available survey days of each individual). 

 

Table 22 shows an artificial example how the MCR is calculated in the acute risk case. First the 

cumulative exposure per day is calculated by cumulating the  exposure of each substance multiplied 

by the relative potency factors (RPF). Then, for each day, the cumulative exposure (in equivalents of 

the reference compound) is divided by the maximum exposure of a single compound on that day. The 

last column shows the MCR values within parenthesis the compound with the highest exposure. The 

MCR has a value of 1 or close to 1 for mixtures where the exposure is dominated by one compound 

(e.g. day 1, compound B). When all compounds have approximately equal exposure (e.g. day 3) the 

MCR value is equal or close to the number of compounds, here 4. Day 2 represents an intermediate 

case. The MCR suggest that for exposure days (or persons) with MCR values close to 1, the need for a 

cumulative risk assessment is low. 

 

 compound A compound B compound C compound D total exposure ratio 

day 1 0.01 0.99 0 0 1.00 1.01 (B) 

day 2 0.10 0.20 0.30 0.40 1.00 2.50 (D) 

day 3 0.25 0.25 0.24 0.26 1.00 3.99 (D) 

Table 22: Maximum Cumulative Ratios 

 

In the example of  Table 22, all days have equal values for total exposure. For real data, total exposure 

will vary. It is obviously of interest to know if the MCR is high or low at those days (or individuals)  

where the total exposure is highest. 

 

All the following tests are implemented on the French dataset. This dataset is constituted of the 

exposure of the French general population to 83 pesticides. The total population (4079 individuals) is 

composed of 2624 adults (between 18 and 79 years) and 1455 children (between 3 and 17 years). 

Consumption data for these two populations are available from the INCA2 survey using a seven-day, 

open-ended food record. Data for pesticide residues in food were recorded for the 83 substances in the 

annual monitoring programmes implemented between 2009 and 2013 by the French administrations 

(Ministry of Economy, Ministry of Agriculture, Ministry of Health). Only 39 pesticides had 

quantified values (> of the limit of reporting). Thus, tests were done on 39 pesticides among the 83. 

 

 

In Figure 12, French steatosis data (39 compounds, 4079 persons) are used to calculate the chronic 

exposure matrix. For each indiviual the MCR is calculated and plotted against the total exposure. The 

different colors are used to identify the single compounds with maximum exposure. From the original 

39 compounds, 10 different compounds have the largest exposures. For the total exposure and MCR, 

the p5, p50 and p95 percentiles are indicated with the black line segments. The red line indicates the 
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ratio with value 5. The dashed green lines indicate the p95 percentiles for the MCR value for different 

ranges of the total exposure. The plot shows that MCR values with Imazalil as risk driving compound 

(purple) are predominantly found in the lower part of the plot for relatively high values of the total 

exposure. A second finding is that MCR values decline when total exposure increases. This implies 

that cumulative exposure for most individuals is driven by multiple compounds.  At the right site of 

the plot, individuals are found with high exposure. Because MCR values tend to be lower here, higher 

exposures are received from one predominant compound and not because many compounds are above 

the average level. For those individuals a cumulative risk assessment has less value. 

 

Because Figure 12 can be very dense, in Figure 13, 95% confidence regions representing bivariate 

lognormal distributions of MCR and total exposure are plotted. This figure facilitates interpretation of 

the first figure. Note the two lines for Tetraconazole and Tebuconazole due to two observations 

available. Note that compounds with just one observation cannot be plotted in this display, and 

compounds with 2 observations are represented by a line. 

 

 
Figure 12: Maximum Cumulative Ratios vs total exposure 
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Figure 13: Bivariate distributions MCR vs total exposure 

 

11.3 Matrix factorization 

Starting point to identify major mixtures of substances using exposure data was to use Non-negative 

Matrix Factorization (NMF).  Non-negative Matrix Factorization was proposed by Lee & Seung 

(1999) and Saul & Lee (2002) and deals specifically with non-negative data that have excess zeros 

such as exposure data. Zetlaoui et al. (2011), Sy et al. (2013), introduced this method in food risk 

assessment to define diet clusters. 

 

The NMF method was then implemented by Béchaux et al. (2013) in order to identify food 

consumption patterns and main mixtures of pesticides to which the French population was exposed 

using TDS exposure to 26 priority pesticides.   

 

At the start of the Euromix project ideas had evolved: to obtain less components per mixture 

experiments were made using Sparse Nonnegative Matrix Factorization (SNMF) (Hoyer 2004). This 

method was found not to give stable solutions. Better results were obtained with Sparse Nonnegative 

Matrix Underapproximation (SNMU) (Gillis and Plemmons 2013). This model also fits better to the 

problem situation because also the residual matrix after extracting some mixtures should be 

nonnegative. The SNMU method has been implemented in MCRA. 

 

Indeed, NMF may be used to identify patterns or associations between substances in exposure data. 

NMF can be described as a method that finds a description of the data in a lower dimension. There are 

standard techniques available such as principal components analysis or factor analysis that do the 

same, but their lower rank representation is less suited because they contain negative values which 

makes interpretation hard and because of the modelling with a Gaussian random vectors which do not 
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correctly deal with the excess of 0 and non-negative data . The NMF solution approximates a non-

negative input matrix (i.c. exposure data) by two constrained non-negative matrices in a lower 

dimension such that the product of the two is as close as possible to the original input matrix. In 

Figure 14, the exposure matrix M with dimensions m (number of compounds) and n (number of intake 

days or persons) is approximated by matrix U and V with dimensions (m x k) and (k x n) respectively, 

where k represents the number of mixtures. Matrix U contains weights of the compounds per mixture, 

matrix V contains the coefficients of presence of mixtures in exposure per intake day or person. M is 

non-negative (zero or positive) and U and V are constraint to be non-negative. The minimization 

criterium is: ||M – UV||
2
 such that U ≥ 0 and V ≥ 0. 

 

 
Figure 14: NMF approximation of exposure data 

 

The minimization criterium is: ||M – UV||
2
 such that U ≥ 0 and V ≥ 0. 

 

The solution found by NMF contains zeros, but mixtures still contain many components which 

complicates interpretability. Therefore, the Sparse Nonnegative Matrix Underapproximation (SNMU) 

(Gillis and Plemmons 2013) which also provide sparse results was investigated. The SNMU has also 

some nice features well adapted to the objective of the Euromix project: the solution is independent of 

the initialization and the algorithm is recursive. Consequently, the SNMU method which is based on 

the same decomposition process as the NMF was the one implemented in MCRA. 

 

SNMU is initialized using an optimal nonnegative rank-one approximation using the power method 

(https://en.wikipedia.org/wiki/Power_iteration). This initialization is based on a singular value 

decomposition and results in general in a unique solution that is sparse. The SNMU algorithm is 

called recursive because after identifying the first optimal rank-one underapproximation  u1v1, the next 

rank-one factor is recovered by subtracting u1v1 from M and applying the same factorization algorithm 

to the remainder M – u1v1. The solution u1v1 is called a rank-one underapproximation because an 

upper bound constraint is added to ensure that the remainder M – u1v1 is non-negative. For Matlab 

code see: https://sites.google.com/site/nicolasgillis/code.  

11.3.1 Exposure matrix 

Basically, exposure is calculated as consumption x concentration. By summing the exposures from the 

different foods for each compound per person day separately, the exposure matrix for mixture 

selection is estimated: 

i

p

k

ijkcijk

ijc
bw

cx

y

 1  

where yijc is the exposure to compound c by individual i on day j (in microgram substance per kg body 

weight), xijk is the consumption by individual i on day j of food k (in g), cijkc is the concentration of 

https://en.wikipedia.org/wiki/Power_iteration
https://sites.google.com/site/nicolasgillis/code
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compound c in food k eaten by individual i on day j (in mg/kg), and bwi is the body weight of 

individual i (in kg). Finally, p is the number of foods accounted for in the model. 

More precisely, for an acute or short term risk assessment, the exposure matrix summarises the yijc  

with columns denoting the individual-days (ij) and rows denoting the compounds (c). Each cell 

represents the sum of the exposures for a  compound on that particular day. For a chronic or long term 

risk assessment, the exposure matrix is constructed as the sum of all exposures for a particular 

compound averaged over the total number of intake days of an individual (compounds x persons). So 

each row represents a compound and a column an individual. Each cell represents the observed 

individual mean exposure for a compound for that individual. Note that in the exposure calculation, 

the concentration is the average of all residue values of a compound. 

  

When relative potency factors (RPF) are available then exposures are multiplied by the RPF and thus 

exposures to the different substances are on the same and comparable scale (toxicological scale). In 

this case, the selection of the mixture is risk-based. In some cases, RPFs may not be available. In this 

case exposure to different substances, even in the same unit, may lead to very different effect. To give 

all compounds an equal weight a priori and avoid scaling effect, a normalization of the data can be 

applied as done in Béchaux et al. (2013). In this case, all compounds are assigned equal mean and 

variance, and  the selection of the mixtures will work on patterns of correlation only. Then mixture 

selection is not risk-based anymore but, what could be called, co-exposure-based.  

 

Finally, in the mixture selection module of MCRA, the SNMU expects RPF data for a risk-based 

selection. If not available, the user should provide alternative RPF data, e.g. values 1 for a purely 

exposure-based selection, or lower-tier estimates (e.g. a maximum value on RPF thought possible). 

 

11.3.2 Mechanisms to influence sparsity 

Two mechanisms to influence sparsity are available. The SNMU algorithm incorporates a sparsity 

parameter and by increasing the value, the final mixtures will be more sparse. The other approach is 

by using a subset of the exposure matrix based on a cut-off value for the MCR. High ratios correspond 

to high co-exposure, so it is reasonable to focus on these (person) days and not include days where 

exposure is received from a single compound (ratio close to 1). To illustrate the combined use of 

MCR and the sparsity parameter, the French steatosis data (39 compounds, 4079 persons) are used 

and person days with a ratio > 5 (see Figure 12) are selected yielding a subset of 139 records.  

 

In Figure 15, the effect of using a cut-off level is immediately clear. The number of compounds of the 

first mixture is 17 whereas in the unselected case only 4 compounds were found The three plots show 

the influence of increasing the sparsity parameter from 0 to 1 on the number of compounds in the 

mixture. For values close to 0, the mixture contains 17 compounds. For values > 0.4 the number of 

compounds in the mixture drops to 3.  

 

As mentioned before, one of the nice features of the SNMU algorithm is its recursive character which 

results in identical mixtures. In Figure 16, two U matrices are visualized. In the upper plot 5 mixtures 

are estimated, in the lower plot the solution for 10 mixtures is shown. Because of the ordering the 

plots look different, but a closer inspection of the first 5 mixtures of each solution shows that they are 

the same. 
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Figure 15: Influence of the specified sparsity parameter on the realized sparsity, n = 139  
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Figure 16: Heatmaps for solutions with 5 and 10 mixtures. The first 5 mixtures of both solutions 

are identical. 
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12  Total Diet Study  
In Total Diet Studies (TDS), dietary exposure is based on whole diets as consumed. TDS offers a 

more realistic measure of exposure compared to traditional monitoring and surveillance programs, 

that is concerned with contamination of raw agricultural commodities. In a Total Diet Study, food 

selection is based on national consumption data in such a way that 90 to 95% of the usual diet is 

represented. Selected foods are collected, prepared as consumed and related foods are pooled prior to 

analysis. The composition of a TDS food sample is used in the conversion algorithm in an analogous 

manner as recipees describing the composition of a composite food (table FoodTranslations). The 

main difference is that the translation proportion is always 100% (default). Take TDS food FruitMix 

which is composed of apple, orange  and  pear (table TDSFoodSampleCompositions), then food-as-

eaten apple-pie  is converted to apple, wheat  and butter and subsequently, apple  to food-as-

measured FruitMix (100%). Not necessarily all foods as consumed are represented in a TDS food 

sample. Through the use of read across translations, these foods may be directly linked to a TDS food 

sample, e.g. by specifying that pineapple is translated to FruitMix (table 

ReadAcrossFoodTranslations, 100%), pineapple or foods containing pineapple as ingredient enter the 

exposure assessment. The default translation proportion is 100%.  

The TDS approach for assessing risks are associated with chronic exposures only, in a single 

compound context or cumulative exposure assessment. In MCRA, Total Diet Studies are implemented 

in the chronic risk assessment module. 

For more information about Total Diet Studies, visit the TDS-Exposure website http://www.tds-

exposure.eu. 

12.1 Scenario analysis 

The outcome of a MCRA risk assessment may be that some foods dominate the right upper tail of the 

exposure distribution. A scenario analysis answers the question to what extent the risk of foods with a 

high exposure would have been diminished by an intervention or by taking any precautions. To be 

able to do so, some information is needed about the variability of the concentration distribution of the 

raw agricultural commodities that make up the TDS food sample. These distributions may be 

characterised by a mean and a dispersion factor, the standard deviation or, preferably, a percentile 

point e.g. p95. Monitoring samples may be used for this purpose. In addition, for each subsample food 

an upper concentration limit is needed. This value is interpreted as the concentration that is considered 

a high risk. The decision to intervene or not is based on the comparison between this upper limit and 

p95. 

For p95 ≤ limit, most concentration values are below the value that is considered as a potential risk, so 

there is no urgency to take any precautions. When the opposite is true, i.c. p95 > limit, there may be an 

argument to intervene for this specific food. In MCRA, limits and p95’s are supplied in table 

ConcentrationDistributionsValues. In the MCRA interface, a scenario analysis is checked (optionally) 

and in the scroll down menu only foods are shown with p95 > limit. Selected foods enter the risk 

assessment with a reduced concentration value: 

 

 cTDS  /  reductionfactor, 

 

where cTDS is the concentration value of the TDS food with reductionfactor = p95 / limit.  

 

12.2  Read across versus TDS compositions 

After the conversion from food-as-eaten to food-as-measured, part of the foods or their ingredients are 

not linked to a TDS food. These are so-called failed foodconversions. All other foods or ingredients 

enter the risk assessment and contribute to the exposure distribution. The total exposure can be traced 

back to foods that enter the risk assessment through read across translations or through TDS 

compositions. In the FruitMix example, the total exposure for FruitMix is split into a part due to the 

consumption of apple, orange and pear, the remaining part relates to the consumption of pineapple. 

http://www.tds-exposure.eu/
http://www.tds-exposure.eu/
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The first part is summarized as exposure due to all TDS sample compositions, the second as Read 

Across translations. 

12.3 Uncertainty  

In MCRA, uncertainty of TDS food sample concentrations is specified through the use of table 

ConcentrationDistributionsValues. For each subfood, e.g. apple (subfood of TDS food FruitMix), a 

coefficient of variation, CV, is specified that is derived using the available monitoring samples. Note 

that monitoring samples may be composite samples. For apple, composite food samples are measured 

and each sample contains e.g. 12 apples with unit weight 200 g. So monitoring concentrations, cm_i, 

are based on composite samples with a total weight wm_i  = 2400 g each.  

 

A TDS food sample is composed of wi g of food i with i = 1...k, wi represents the PooledAmount in 

table TDSFoodSampleCompositions. Then, the concentration of a TDS food sample may be 

represented as:  

 

𝑐𝑇𝐷𝑆 =  ∑ (𝑤𝑖 ∗ 𝑐𝑖)/ ∑ 𝑤𝑖
𝑘
𝑖=1

𝑘
𝑖=1    

 

with variance:  

  

𝑣𝑎𝑟(𝑐𝑇𝐷𝑆) =  ∑ (𝑤𝑖 ∗ 𝑣𝑎𝑟(𝑐𝑖))/ ∑ 𝑤𝑖
𝑘
𝑖=1

𝑘
𝑖=1    

 

and var(ci) is the variance of concentrations ci of food i with portion sample size wi. 

 

It is expected that increasing the number of units in a composite sample will have a reverse effect on 

the variation between concentrations.  

Suppose TDS food FruitMix is composed of 2 x 200 = 400 g  apple. The expected variation between 

portion sizes of 400 g will be larger than between portion sizes of 2400 g:  

 

 var(ci) = var(cm_i) * wm_i /wi  

 

 The variance of the monitoring samples are corrected as follows, calculate:  

 

1. var(cm_i) = log(CV
2
m_1 + 1) 

2. var(ci) = var(cm_i) * wm_i / wi 

3. CVi = √(exp(var(c+i)) – 1) 

 

Specify CVi in table ConcentrationDistributionsValues. 
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13  Health impact assessment 
‘A method is proposed for integrated probabilistic risk assessment where exposure assessment and 

hazard characterization are both included in a probabilistic way. The aim is to specify the probability 

that a random individual from a defined (sub)population will have an exposure high enough to cause a 

particular health effect of a predefined magnitude, the critical effect size (CES). The exposure level 

that results in exactly that CES in a particular person is that person’s individual critical effect dose 

(ICED). Individuals in a population typically show variation, both in their individual exposure (IEXP) 

and in their ICED. Both the variation in IEXP and the variation in ICED are quantified in the form of 

probability distributions. Assuming independence between both distributions, they are combined (by 

Monte Carlo) into a distribution of the individual margin of exposure (IMoE). The proportion of the 

IMoE distribution below unity is the probability of critical exposure (PoCE) in the particular 

(sub)population. Uncertainties involved in the overall risk assessment (i.e., both regarding exposure 

and effect assessment) are quantified using Monte Carlo and bootstrap methods. This results in an 

uncertainty distribution for any statistic of interest, such as the probability of critical exposure 

(PoCE). The method is illustrated based on data for the case of dietary exposure to the 

organophosphate acephate. We present plots that concisely summarize the probabilistic results, 

retaining the distinction between variability and uncertainty. We show how the relative contributions 

from the various sources of uncertainty involved may be quantified.’ (abstract from van der Voet & 

Slob, 2007). 

 

‘A statistical model is presented extending the integrated probabilistic risk assessment (IPRA) model 

of van der Voet and Slob (2007) The aim is to characterise the health impact due to one or more 

chemicals present in food causing one or more health effects. For chemicals with hardly any 

measurable safety problems we propose health impact characterisation by margins of exposure. In this 

probabilistic model not one margin of exposure is calculated, but rather a distribution of individual 

margins of exposure (IMoE) which allows quantifying the health impact for small parts of the 

population. A simple bar chart is proposed to represent the IMoE distribution and a lower bound 

(IMoEL) quantifies uncertainties in this distribution. It is described how IMoE distributions can be 

combined for dose-additive compounds and for different health effects. Health impact assessment 

critically depends on a subjective valuation of the health impact of a given health effect, and 

possibilities to implement this health impact valuation step are discussed. Examples show the 

possibilities of health impact characterisation and of integrating IMoE distributions. The paper also 

includes new proposals for modelling variable and uncertain factors describing food processing 

effects and intraspecies variation in sensitivity.’ (abstract from: van der Voet et al, 2009). 
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Figure 17: Individual Margin of Exposure (IMoE) plot for multiple chemicals. 

 

 

Figure 18: Example of MCRA Hazard vs. Exposure plot for multiple chemicals. Distribution of 

Individual Margin of Exposure (IMoE) shown as p5-p95 plotted on diagonal lines through the 

points (P95(IExp),  CED/100)  
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14  Uncertainty analysis 

14.1 Quantifying uncertainties 

In this section, uncertainty due to limited sampled data is covered, not the uncertainty of model 

outcomes that may arise by conducting different modelling approaches or applying alternative 

assumptions in a dietary exposure assessment. 

 

The basic acute exposure distribution is estimated in a Monte Carlo simulation by combining dietary 

consumption records (person-days) with sampled residue values. The resulting distribution represents 

a combination of variability in consumption within the population and between residues in a food lot. 

Percentiles may be used for further quantification e.g. the median or 99
th
 percentile. Due to the limited 

size of the underlying data, these outcomes are uncertain. Confidence (or uncertainty) intervals reflect 

the uncertainty of these estimates, where MCRA uses bootstrap methodology and/or, depending on 

the available data, parametric methods to estimate the uncertainty. 

14.1.1 Empirical method, resampling 

The empirical bootstrap is an approach to estimate the accuracy of an outcome. In its most simple, 

non-parametric form, the bootstrap algorithm resamples a dataset of n observations to obtain a 

bootstrap sample or resampled set of again n observations (sampling with replacement, that is: each 

observation has a probability of 1/n to be selected at any position in the new resampled set). By 

repeating this process B times, one can obtain B resampled sets, which may be considered as 

alternative data sets that might have been obtained during sampling from the population of interest. 

Any statistic that can be calculated from the original dataset (e.g. the median, the standard deviation, 

the 99
th
 percentile, etc.) can also be calculated from each of the B resampled sets. This generates a 

uncertainty distribution for the statistic under consideration. The uncertainty distribution characterises 

the uncertainty of the inference due to the sampling uncertainty of the original dataset: it shows which 

statistics could have been obtained if random sampling from the population would have generated 

another sample than the one actually observed (Efron, 1979, Efron & Tibshirani, 1993). 

Consumption data 14.1.1.1 

In MCRA 8, in an acute exposure assessment individual consumption day data are resampled, thus 

preserving the multivariate consumption patterns and associated weights and/or other individual 

characteristics. The method of resampling is changed compared to MCRA 7, where we actually 

resampled the set of individuals. In MCRA we resample the set of individuals x number of survey 

days. We think that the new implementation better reflects the notion of acute exposure which is 

expressed as the normalized intake per day. For chronic exposure assessments the resampling 

algorithm remained unchanged and the set of individuals (with corresponding days) is resampled. 

Concentration data 14.1.1.2 

Depending on the chosen concentration model, e.g. EFSA Guidance basic models or custom 

Acropolis model, resampling is done on a sample-based basis preserving co-occurrence of residue 

values on the same sample or, for the non-sample-based approaches, on a univariate collection of 

concentration values. For the last approach, the uncertainty algorithm is applied to the dataset 

consisting of both non-detects and positive values; in practice, for a dataset with 0n non-detects and 

1n  positive values, the number of positive values in a resampled set is obtained as a draw from a 

binomial distribution with parameter  101 nnn   and binomial total 10 nn  . Then, this number of 

values is selected randomnly from the set of n1 positive values. 

14.1.2 Parametric methods 

Instead of bootstrapping the observed data, inference about parameters is based on parametric 

methods. For processing, where factors are specified through a nominal and/or upper value this is the 
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natural choice. For concentration data, where the lognormal model is used to represent less 

conservative scenario’s (EFSA, 2012), the parametric bootstrap may be an alternative, especially 

when data are limited and the empirical bootstrap fails. 

Concentration models 14.1.2.1 

Let x denote a random variable from the specified distribution. The log transformed variable y = ln(x) 

is normally distributed with mean y  and variance 
2

y . The maximum likelihood estimates are ŷ  

and 2ˆ
y . In each bootstrap sample, values are drawn from a normal distribution where the maximum 

likelihood estimates are replaced by (
*ˆ
y , 2*ˆ

y ), see also paragraph Error! Reference source not 

ound.. 

Processing factors 14.1.2.2 

Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-

normal distribution (depending on the distribution type as set in table ProcessingTypes).  

In case of a fixed factor, the uncertainty distribution is lognormal or logistic-normal with the same 

mean  as the fixed value, and with a standard deviation unc which is calculated from the specified 

central value  (or nominal) and an estimate of the p95 of the uncertainty distribution (set 

NominalUncertaintyUpper in table ProcessingFactors).  

 

The calculation is: 𝜎𝑢𝑛𝑐 =
𝑓(𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑈𝑝𝑝𝑒𝑟)−𝑓(𝜇)

1.645
 

 

with f() = logit for the logistic-normal distribution (distribution type 1) and f() = ln for the lognormal 

distribution (distribution type 2). Values lower than 0.01 or higher than 0.99 (distribution type 1 only) 

are replaced by default values (0.01 and 0.99); this is useful computationally to avoid problems. In 

each iteration of the uncertainty analysis a new value is drawn from this distribution to be used as a 

fixed factor in the Monte Carlo calculation. 

In case of distribution based processing factors (describing the variability of processing factors) two 

uncertainties can be specified.  

For unc, specification and calculation is as before (set NominalUncertaintyUpper in table 

ProcessingFactors).  

The uncertainty about the variability standard deviation 𝜎𝑣𝑎𝑟 =
𝑓(𝑈𝑝𝑝𝑒𝑟)−𝑓(𝜇)

1.645
  can be specified by the 

UpperUncertaintyUpper value in table ProcessingFactors. This value is specified as the p95 upper 

limit on Upper. The specified value is used to derive in a iterative search the number of degrees of 

freedom df (van der Voet et al. 2009). In the uncertainty analysis, a modified chi-square distribution 

with df degrees of freedom is used to generate new values of var. A very high value of df means litte 

uncertainty and var will be almost equal in all iterations of the uncertainty analysis. A df close to 0 

means a large uncertainty and very different values of var will be obtained in the iterations of the 

uncertainty analysis. The p95 upper limit on Upper is set through parameter UpperUncertaintyUpper 

in table ProcessingFactors.  

Portion sizes 14.1.2.3 

In the context of the European Food Consumption Validation Project (EFCOVAL) the MCRA model 

for uncertainty has been adapted specifically to the six quantification methods of EPIC-SOFT (Table 

23). Using EPIC-SOFT for 24-hour recall consumptions are quantified using portion size and amounts 

of portions consumed. Although individual consumption data are expressed in grams per day, the 

primary data may be associated with uncertainty in portion size and amount or number of portions 

consumed. So, the primary data are unitweights (e.g. the weight of a portion shown on a photo, or the 

weight of a standard household measure) and amounts of units (e.g. the number of shown portions or 

the number of cups), the multiplication of both values is the amount consumed in grams. The 

corresponding portion size uncertainty is primarily connected with unitweights and amounts.  
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Method Unitweight (uw) Amount (a) 

Photographs (P) Standard portion in grams 

(Photo 1 of broccoli is 78 g) 

Proportion or multiple of standard portion 

(1 times photo 1 of broccoli) 

Household measures 

(H) 

Standard portion in grams 

(a glass of tea is 150 g) 

Proportion or multiple of standard portion 

(2 glasses of tea) 

Standard units (U) Standard portion in grams 

(a can of corn is 285 g) 

Proportion or multiple of standard portion 

(1/2 a can of corn) 

Standard portion (S) Standard portion in grams 

(onion along with fries 

weighs 10 g) 

1 

Gram/volume (G) 1 Amount in grams 

(75 g of potato salad) 

Unknown (?) 1 Amount in grams 

(Salad dressing weighs 15 grams) 

Table 23: Overview of EPIC-SOFT quantification methods, with examples in brackets 

Three methods (P, H and U) use both unitweights and amounts, one method (S) uses only unitweights, 

and two methods (G and ?) use only amounts. The difference between unitweight and amount is as 

follows: unitweights (in grams) are unique for a specific ‘food item – quantification method’-

combination, but the same for all individuals in the survey, whereas amounts are potentially different 

for each food item on each eating occasion for each day of an individual. Amounts are in grams 

(methods G and ?) or in number of units (methods P, H, and U).  

 

For portion size uncertainty analysis of the usual intake assessment of foods and nutrients two sources 

of uncertainty are modelled:  

1. uncertainty in uw (for EPIC-SOFT quantification methods P, H, U and S) 

2. uncertainty in a (for EPIC-SOFT quantification methods G, P, H, U and ?)  

 

For quantification methods P, H and U the uncertainty in uw as well as the uncertainty in a needs to 

be specified, for quantification methods G and ? the uncertainty in a needs to be specified, and for 

method S the uncertainty in uw needs to be specified. The uncertainty cv specifications were obtained 

using limited expert opinion to provide estimated upper values for a and uw, and equating these to the 

p97.5 of the (log)normal uncertainty distribution (the best estimates are interpreted as the mean m).  

 

More details of the approach to portion size uncertainty implemented in MCRA are described in 

Souverein et al. (2011). 

14.1.3 External uncertainty distributions 

Non-dietary data 14.1.3.1 

When the user supplies non-dietary exposure estimates that have been calculated probabilistically, i.e. 

there is a distribution for the non-dietary exposure rather than a single nominal value, then this 

information will be propagated as part of the MCRA exposure assessment. Distributions may be 

included to represent variability, uncertainty or both, and in these cases the aggregate exposure 

estimates are reported with variability and/or uncertainty as appropriate. Multiple (uncertain) values 

from the non-dietary exposure distribution may be supplied per individual and per compound. 

 

Exposures within a dietary survey may be expressed as correlated or independent for the different 

compounds. For example, if the exposures are a mixture of compounds in a known ratio (e.g. from a 

specific tank mix of pesticides), or if exposure to one compound strongly implies that exposure to 

another is likely, these relationships may be included in the non-dietary data supplied by the user. 

Inference for the matched-case scenario with uncertainty analysis can use exposure sets. These are 

specific sets of exposures defined for each individual, (e.g. Table 13, Table 16) and in any uncertainty 
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iteration an individual will receive exactly one of the exposure sets for that individual. Alternatively, 

independence may be represented by generating sets drawn from independent distributions when 

generating these tables. Details, including an example of the input format for implementing 

uncertainty in non-dietary exposure, are given in Section 11.7. 

14.2 Unquantified uncertainties 

In any exposure or risk assessment, only a proportion of the uncertainties will be quantified, while 

others remain unquantified. Even when a source of uncertainty is quantified, there will be further 

uncertainty (sometimes referred to as ‘secondary uncertainty’) about how well it is represented. When 

using a risk or exposure estimate to support decision-making, it is important to consider whether the 

unquantified uncertainties might be large enough to change the risk management decision. It is 

therefore important to consider uncertainties at each step in the assessment and document them in a 

transparent manner (Codex 2011, EFSA 2009). 

 

EFSA’s (2006) guidance on uncertainty in dietary exposure assessment suggested a tabular approach 

for listing the uncertainties and evaluating their individual and combined impact on the estimated 

exposure. EFSA (2012) emphasises the benefits of providing at least an approximate quantification of 

the scale on which the evaluations are made. The general form of the basic tabular approach is 

illustrated in Table 24, and an example of a quantitative scale for evaluating the impact of 

uncertainties is shown in Figure 19. More detailed step-by-step guidance for constructing uncertainty 

tables of this type (in the context of hazard assessment but equally applicable to exposure assessment) 

is provided by Edler et al. (2013, section 4.2). 

 

Sources of uncertainty additional to those quantified in the 

exposure assessment 

Evaluation of uncertainty 

 Uncertainty 1: very briefly describe the uncertainty and your 

evaluation of the extent to which it might cause 

underestimation and/or overestimation of exposure 

Record here your 

evaluation as a range of 

numbers, symbols or 

words 

 Insert more rows for additional uncertainties, as needed  

Overall assessment: verbal description of your assessment of the 

overall unquantified uncertainty affecting the exposure estimate 

and a very brief explanation of how it is derived from the 

individual uncertainties 

Record here your evaluation 

of the overall unquantified 

uncertainty as a range of 

numbers, symbols or words  

Table 24. General tabular format for evaluating unquantified uncertainties affecting assessment 

of a single route of exposure. If symbols or words are used in the right hand column they must 

be defined in the table legend, in accompanying text, or in a diagram or scale (see Figure 19). 
 

 

Figure 19. Example of quantitative scale for symbols used to evaluate unquantified uncertainties1. 

                                                      
1 Note that some users prefer to define the symbols with opposite meaning, e.g. + for uncertainties that would 

tend to make the true exposure higher than the estimate (e.g. EFSA, 2013a). There is no general consensus on 

which approach to use, so it is important to make clear which is used in each assessment.  

 Underestimate upper tail exposures

• + ++ +++   

2x2x5x 5x 10x>10x >10x

Overestimate upper tail exposures

10x

++++   

±20%
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Appendix 2 of EFSA (2012) included a general assessment of unquantified uncertainties and was 

designed to be used as a starting point or template for evaluating uncertainties in probabilistic dietary 

exposure assessments. This can be adapted to specific applications and models such as those 

implemented in the MCRA software tool. An example of this for dietary exposure is presented in 

Boon et al. (2015). Similar evaluations may be constructed for non-dietary routes of exposure 

(Kennedy et al., 2015a). 

  

In an assessment of aggregate exposure it will be necessary to evaluate the overall uncertainty of the 

estimated aggregate exposure, taking account of the uncertainties associated with each individual 

route and also how they combine. For this purpose it is useful to develop a separate summary table, 

along the lines illustrated in Table 25, which summarises the evaluated uncertainty for each route of 

exposure and provides an evaluation of the overall uncertainty for the aggregate exposure. A complete 

example, comprising uncertainty tables for individual routes of exposure and for aggregate exposure, 

may be found in EFSA (2013a, section 4.9.3 and appendix VIII). Other examples are in Boon et al. 

(2015) and Kennedy et al. (2015a). 

 

Table 25. Suggested format for table summarising the assessment of unquantified uncertainties for 

each route of exposure together with the assessor’s subjective evaluation of their combined impact on 

the estimate of aggregate exposure (bottom row). For example of scale for symbols see Figure 19. 

Route of exposure Magnitude and direction of 

unquantified uncertainties 

affecting the estimated exposure 

Dietary route. Copy here the narrative conclusion from the 

evaluation of unquantified uncertainties for the dietary route (e.g. 

bottom row of uncertainty table in Boon et al. (2015).  

Symbols to show overall evaluation 

of uncertainty for the dietary route, 

copied from the relevant table  

(e.g.: +/++) 

Dermal route. Copy here the narrative conclusion from the 

evaluation of unquantified uncertainties for the dermal route (e.g. 

bottom row of uncertainty table in Kennedy et al. (2015b). 

Symbols to show overall evaluation 

of uncertainty for the dermal route, 

copied from the relevant table  

Insert additional rows for further routes of exposure, and/or for 

uncertainties associated with how the routes are combined to estimate 

aggregate exposure. 

 

Overall evaluation of uncertainty affecting the estimate of 

aggregated exposure. Add narrative text here, describing the 

assessor’s evaluation of the overall degree of uncertainty affecting the 

assessment outcome, taking account of the uncertainties for each 

route as summarised above.  

 

 

Evaluation of overall uncertainty for 

the estimate of aggregate exposure 

(e.g., - - - /+) 

 

 

Evaluation of unquantified uncertainties is necessarily subjective and approximate, and it is important 

to make this clear when communicating results, to avoid them being over-interpreted. If a firmer 

assessment of the unquantified uncertainties is required, consideration could be given to conducting 

the evaluation using formal methods for expert elicitation (EFSA, 2013b) or to treating some of the 

unquantified uncertainties deterministically or probabilistically so they become part of the quantified 

uncertainty. In the latter case it may be efficient to target quantification on the most important 

unquantified uncertainties, as indicated by the approximate subjective evaluation. This process may 

be repeated iteratively until the characterisation of uncertainty is sufficiently clear to support the risk 

management decision in hand. For more discussion of this tiered approach to evaluating uncertainty, 

see EFSA (2006).    
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15  Appendices 

15.1 Concentration models 

Let x denote a random variable from a lognormal distribution. Then, the log transformed variable y = 

ln(x) is normally distributed with mean y  and variance 2

y . 

The probability density function (p.d.f.) of y may be expressed as: 
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where )log(Pr(0 lorxyp   , lorx is the limit of reporting and I(y;0) is an indicator function for 

)log( lorxy  . For 00 p , the p.d.f. of y reduces to the usual lognormal density.  
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with (.)  the standard normal c.d.f. and yylorxz  /))(log(  .  

Model parameters are estimated using maximum likelihood estimation based on the loglikelihood 

functions specified below. The loglikelihood functions are evaluated in R, using the optim algorithm 

to find estimates for y , 
2

y  and 0p . 

15.1.1 Mixture zero spike and censored lognormal 

The loglikelihood may be expressed as: 
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where )log( ii xy  , (.)  is the standard normal c.d.f., yylorixz  /))(log( ,  ,  

yylor lorz  /))(log(  , with n0 number of censored values (xi < xi,lor), n1 number of uncensored 

values (xi >= xi,l or) and xi, i = 1…n.  

Multiple values for LOR are allowed. 

15.1.2 Censored lognormal 

When 00 p , the loglikelihood reduces to: 
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Multiple values for LOR are allowed. 

15.1.3 Mixture non-detect spike and truncated lognormal 

Ignoring the n0 values below xlor, the loglikelihood may be expressed as: 
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Only one value for LOR is allowed. 
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15.1.4 Mixture non-detect spike and lognormal 

Ignoring the n0 values below xlor, the loglikelihood may be expressed as: 
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Multiple values for LOR are allowed. 

15.2 Unit variability 

A composite sample for food k is composed of nuk units with nominal unit weight wuk. The weight of 

a composite sample is wmk = nuk  wuk with mean residue value cmk. 

15.2.1 Beta distribution 

Under the beta model simulated unit values are drawn from a bounded distribution on the interval (0, 

cmax) with cmax = nuk * cmk. The standard beta distribution is defined on the interval (0, 1) and is 

usually characterised by two parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). 

Alternatively, it can be parameterised by the mean µ = a/(a+b) and the variance 2 
= ab(a+b+1)

-

1
(a+b)

-2
, or, as applied in MCRA, by the mean µ and the squared coefficient of variation cv

2 
= ba

-

1
(a+b+1)

-1
. 

For the simulated unit values in each iteration of the program we require an expected value cmk. This 

scales down to a mean value µ = cmk/cmax = 1/nuk in the (standard) beta distribution. From this value 

for µ and an externally specified value for cvk the parameters a and b of the beta distribution are 

calculated as: 

 

  1
1


 knuba  

  
2

211

kk

kkk

cvnu

cvnunu
b


  

 

From the second formula it can be seen that cvk should not be larger than 1knu  in order to avoid 

negative values for b. 

When the unit variability is specified by a variability factor 
k

k
k

cm

p
v

5.97
  instead of a coefficient of 

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability 

975.0)],([ baBetaP for  1 knuab .  

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit 

concentrations cijk on the interval (0, cmax). 

15.2.2 Lognormal distribution 

The lognormal distribution is characterised by μ and , which are the mean and standard deviation of 

the log-transformed concentrations. The unit log-concentrations are drawn from a normal distribution 

with mean   2

2
1ln   ikcm .  

The coefficient of variation cv is turned into the standard deviation  on the log-transformed scale 

with: 

  = √ln(cv
2
 + 1) 

 

The variability factor is defined as the 97.5
th 

percentile of the concentration in the individual 

measurements divided by the corresponding mean concentration seen in the composite sample. A 

variability factor v is converted into the standard deviation  as follows: 
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2

2

2/196.1

2/1

96.15.97 










 e
e

e

mean

p
v   

 

with μ and  representing the mean and standard deviation of the log-transformed concentrations. So 

 

 ln(v) = 1.96 – 1/2
2 

 

Solving for  gives: 
2
 – 2*1.96 + 2log(v) = 0, with roots for  according to: 

 

  = 1.96  √(1.96
2
 – 2log(v)) 

 

The smallest positive root is taken as an estimate for  . 

15.2.3 Bernoulli distribution 

The bernoulli model is a limiting case of the beta model, which can be used if no information on unit 

variability is available, but only the number of units in a composite sample is known (see van der 

Voet et al. 2001). 

As a worst case approach we may take the coefficient of variation cv as large as possible. When cv is 

equal to the maximum possible value 1knu , the (unstandardised) beta distribution simplifies to a 

bernoulli distribution with probability (nuk – 1)/nuk (or (vk-1)/ vk ) for the value 0 and probability 1/nuk 

(or 1/vk ) for the value cmax = nuk * cmk..  

In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For 

example, with nuk = 5, there will be 80% probability at cijk = cmk and 20% probability at cijk = cmax.. 

When the number of units nuk in the composite sample is missing, the nominal unit weight wuk is used 

to calculate the parameter for unit variability.  

15.3 Processing 

For distribution based processing factors specify fk,nominal and fk,upper (Nominal and Upper in table 

ProcessingFactors). Two situations are distinguished depending on the type of transformation. 

15.3.1 Nonnegative processing factors  

Equate the logarithms of fk, nominal and fk, upper to the mean and the 95% one-sided upper confidence limit 

of a normal distribution. This normal distribution is specified by a mean ln(fk, nominal) and a standard 

deviation {ln(fk, upper) – ln(fk, nominal)}/1.645.  

15.3.2 Processing factors between 0 and 1: 

Equate the logits of fk, nominal and fk, upper to the mean and the 95% one-sided upper confidence limit of a 

normal distribution. This normal distribution is specified by a mean logit(fk, nominal) and a standard 

deviation {logit(fk, upper) – logit(fk, nominal)}/1.645.  

15.4 Box-Cox power transformation 

The Box-Cox power transformation is a data transformation to achieve a better normality and to 

stabilize the variance. In MCRA, the transformation parameter p in py p /)1(   is determined by 

maximizing the log-likelihood function  
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where i indexes the n observations and  



Reference Manual MCRA 8.2  - 63 - 

 





n

i

p

i

p y
n

y
1

)()( 1
 is the average of the 

)( p

iy  (Box & Cox, 1964). 

15.5 Chronic exposure assessment 

15.5.1 Daily consumed foods 

Foods are consumed on a daily basis. 

Model 15.5.1.1 

For individual i on day j let 𝑌𝑖𝑗 denote the 24 hour recall of a food (i=1…n; j=1…𝑛𝑖). In most cases 

within-individual random variation is dependent on the individual mean and has a skewed 

distribution. It is therefore customary to define a one-way random effects model for 𝑌𝑖𝑗 on some 

transformed scale  

𝑌𝑖𝑗
∗ = 𝑔(𝑌𝑖𝑗) = 𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗   with  𝑏𝑖 ~ N(0, 𝜎𝑏

2)   and  𝑤𝑖𝑗  ~ N(0, 𝜎𝑤
2 ) 

Note that 𝑏𝑖 represents variation between individuals and 𝑤𝑖𝑗 represents variation within individuals 

between days.  

The mean 𝜇𝑖 may depend on a set of covariate 𝒁𝑖 = (𝑍𝑖1, … , 𝑍𝑖𝑝): 

 𝜇𝑖 = 𝛽0 + 𝜷1
𝑡 𝒁𝑖 

where 𝛽0 and 𝜷1 are regression coefficients. 

The usual intake 𝑇𝑖 for an individual i is defined as the mean consumption over many many days. This 

assumes that the untransformed intakes 𝑌𝑖𝑗 are unbiased for true usual intake rather than the 

transformed intakes 𝑌𝑖𝑗
∗ . In mathematical terms 𝑇𝑖 is the expectation of the intake for this individual 

where the expectation is taken over the random day effect: 

𝑇𝑖 = E𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗) | 𝑏𝑖] ≝ 𝐹(𝑏𝑖) 

Model based usual intake 15.5.1.2 

For the model based usual intake first note that the conditional distribution  

(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗 | 𝑏𝑖) ~ N(𝜇𝑖 + 𝑏𝑖, 𝜎𝑤
2 ) 

It follows that the usual intake 𝑇𝑖 is given by  

𝑇𝑖 = E𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗| 𝑏𝑖)] = ∫ 𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗)
1

√2𝜋𝜎𝑤
2

 𝑒𝑥𝑝 (−
𝑤2

2𝜎𝑤
2 )

∞

−∞

𝑑𝑤 

Logarithmic transformation 

For the logarithmic transform the usual intake 𝑇𝑖 can be written in closed form using the formula for 

the mean of the lognormal distribution: 

𝑇𝑖 = exp (𝜇𝑖 + 𝑏𝑖 + 𝜎𝑤
2 2⁄ ) 

In this case 𝑇𝑖 follows a log-normal distribution with mean 𝜇𝑖 + 𝜎𝑤
2 2⁄  and variance 𝜎𝑏

2. This fully 

specifies the usual intake distribution, e.g. the mean and variance of the usual intake are given by 

𝜇𝑖𝑇 = E[𝑇𝑖] = exp(𝜇𝑖 + 𝜎𝑤
2 2⁄ + 𝜎𝑏

2 2⁄ ) 

𝜎𝑖𝑇
2 = Var[𝑇𝑖] = [exp(𝜎𝑏

2) − 1] exp(2𝜇𝑖 + 𝜎𝑤
2 + 𝜎𝑏

2) 

Power transformation 

For the power transformation the integral can be approximated by means of N-point Gauss-Hermite 

integration, see Appendix A. This results in the following usual intake 

𝑇𝑖 ≈
1

√𝜋
∑ 𝑤𝑗(𝜇𝑖 + 𝑏𝑖 + √2𝜎𝑤𝑥𝑗)

𝑝
𝑁

𝑗=1

 

with p the inverse of the power transformation. A similar approximation can be used for the Box-Cox 

transformation. There can be a small problem with Gauss-Hermite integration. The summation term 
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(𝜇𝑖 + 𝑏𝑖 + √2𝜎𝑤𝑥𝑗)
𝑝

 can not be calculated when the factor between round brackets is negative and 

the power p is not an integer. This can happen when (𝜇𝑖 + 𝑏𝑖) is small relative to the between day 

standard error 𝜎𝑤. In that case the corresponding term is set to zero. This is not a flaw in the 

numerical method but in the statistical model since the model allows negative intakes on the 

transformed scale which cannot be transformed back to the natural scale.  

The mean and variance of Ti can be approximated again by using Gauss-Hermite integration: 

𝜇𝑖𝑇 = E[𝑇𝑖] =
1

√𝜋
∑ 𝑤𝑘

1

√𝜋
∑ 𝑤𝑗(𝜇𝑖 + √2𝜎𝑤𝑥𝑗 + √2𝜎𝑏𝑥𝑘)

𝑁

𝑗=1

𝑁

𝑘=1

 

𝜎𝑖𝑇
2 = Var[𝑇𝑖] =

1

√𝜋
∑ 𝑤𝑘 [

1

√𝜋
∑ 𝑤𝑗(𝜇𝑖 + √2𝜎𝑤𝑥𝑗 + √2𝜎𝑏𝑥𝑘)

𝑁

𝑗=1

]

2

− 𝜇𝑇
2

𝑁

𝑘=1

 

An alternative method for obtaining model based usual intakes for  the power transformation employs 

a Taylor series expansion for the power, see e.g. Kipnis (2009). This is however less accurate than 

Gauss-Hermite integration. For the power transformation simulation is required to derive the usual 

intake distribution: simulate a random effect 𝑏𝑖 for many individuals and then approximate 𝑇𝑖 for 

these individuals. The 𝑇𝑖 values then form a sample form the usual intake distribution. 

Model assisted usual intake 15.5.1.3 

The model assisted approach employs a prediction for the usual intakes of every individual in the 

study. This requires a prediction of the individual random effect 𝑏𝑖 for every individual. 

Model assisted usual intake on the transformed scale 

In the one-way random effects model the Best Linear Unbiased Prediction for (𝜇𝑖 + 𝑏𝑖) is given by 

BLUP𝑖 = 𝜇𝑖 + (�̅�𝑖
∗ − 𝜇𝑖) (

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
) 

in which �̅�𝑖
∗ is the mean of the transformed intakes for individual i. BLUPs have optimal properties 

for some purposes, but not for the purpose of representing the variation 𝜎𝑏
2 between individuals. This 

can be seen by noting that  

Var(�̅�𝑖
∗) =  𝜎𝑏

2 + 𝜎𝑤
2 𝑛𝑖     and thus    Var(BLUP𝑖)⁄ = (

𝜎𝑏
4

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
) 

which is smaller than the between individual variance 𝜎𝑏
2. As an alternative a modified BLUP can be 

defined by means of  

modified BLUP𝑖 = 𝜇𝑖 + (�̅�𝑖
∗ − 𝜇𝑖)√(

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
) 

which has the correct variance 𝜎𝑏
2 and also the correct mean 𝜇𝑖. However these optimal properties 

disappear when modified BLUPs are directly backtransformed to the original scale.  

Logarithmic transformation 

For the logarithmic transformation the usual intake 𝑇𝑖 follows a log-normal distribution with mean  

𝜇𝑖 + 𝜎𝑤
2 /2 and variance 𝜎𝑏

2. If we can construct a BLUP like stochastic variable with the same mean 

and variance, then this variable be an unbiased predictor with the correct variance. It is easy to see 

that the following variable has the same distribution as 𝑇𝑖 

model assisted BLUP𝑖 = 𝜇𝑖 +
𝜎𝑤

2

2
+ (�̅�𝑖

∗ −  𝜇𝑖)√(
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
) 

So the model assisted individual intake Exp(model assisted BLUPi) has the same distribution as the 

usual intake and is thus the best predictor for usual intake.  
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Kipnis et al. (2009) employs the conditional distribution of 𝑏𝑖 given the observations 𝑌𝑖1, …, 𝑌𝑖𝑛𝑖
 to 

obtain a prediction. First note that (𝑏𝑖 | 𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)  =  (𝑏𝑖 | 𝑌𝑖1

∗ , … , 𝑌𝑖𝑛𝑖

∗ )  =  (𝑏𝑖 |�̅�𝑖
∗). Since all 

distributions in the one-way random effects model are normal it follows that: 

(𝑏𝑖, �̅�𝑖
∗) ~ BivariateNormal(0, 𝜇𝑖 , 𝜎𝑏

2, 𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄ , 𝜎𝑏
2)  

where the last parameter represents the covariance between 𝑏𝑖 and �̅�𝑖
∗. It follows that the conditional 

distribution 

(𝑏𝑖 | �̅�𝑖
∗) ~ 𝑁(𝜇𝑐 , 𝜎𝑐

2)   with   𝜇𝑐 =
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
(�̅�𝑖

∗ − 𝜇𝑖)   and   𝜎𝑐
2 =

𝜎𝑏
2  𝜎𝑤

2 𝑛𝑖⁄

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
 

A prediction for the usual intake 𝑇𝑖 = 𝐹(𝑏𝑖) is then obtained by the expectation  

E[𝐹(𝑏𝑖) | �̅�𝑖
∗] = ∫ 𝐹(𝑏) 𝜙(𝑏; 𝜇𝑐 ,  𝜎𝑐

2) 𝑑𝑏 

For the logarithmic transform 𝐹(𝑏𝑖) = exp(𝜇𝑖 + 𝑏𝑖 + 𝜎𝑤
2 2⁄ ) and the expectation reduces to  

E[𝐹(𝑏𝑖) | �̅�𝑖
∗] = exp(𝜇𝑖 + 𝜇𝑐 + 𝜎𝑐

2 2⁄ + 𝜎𝑤
2 2⁄ )  

which is a function of �̅�𝑖
∗ through 𝜇𝑐.To obtain the mean and variance of the prediction note that 

𝜇𝑖 + 𝜇𝑐 + 𝜎𝑐
2 2⁄ + 𝜎𝑤

2 2⁄  ~ 𝑁 (𝜇𝑖 + 
𝜎𝑏

2  𝜎𝑤
2 𝑛𝑖⁄

2(𝜎𝑏
2  + 𝜎𝑤

2 𝑛𝑖⁄ )
+

𝜎𝑤
2

2
,

𝜎𝑏
4

𝜎𝑏
2  + 𝜎𝑤

2 𝑛𝑖⁄
) 

It follows that the expectation of the prediction equals 

E[𝐸[𝐹(𝑏𝑖) | �̅�𝑖
∗]] = exp (𝜇𝑖 +  

𝜎𝑏
2  𝜎𝑤

2 𝑛𝑖⁄

2(𝜎𝑏
2  + 𝜎𝑤

2 𝑛𝑖⁄ )
+

𝜎𝑤
2

2
+

𝜎𝑏
4

2(𝜎𝑏
2  + 𝜎𝑤

2 𝑛𝑖⁄ )
)

= exp (𝜇𝑖 +
𝜎𝑏

2

2
+

𝜎𝑤
2

2
) 

which equals the mean of the usual intake. However the variance of the prediction equals 

Var[𝐸[𝐹(𝑏𝑖) | �̅�𝑖
∗]] = [exp (

𝜎𝑏
4

𝜎𝑏
2  + 𝜎𝑤

2 𝑛𝑖⁄
) − 1] exp(2𝜇𝑖 + 𝜎𝑏

2 + 𝜎𝑤
2 ) 

 

Which is less than the variance of the usual intake. The approach of Kipnis et al (2009) will therefor 

result in too much shrinkage of the model assisted usual intake.  

Power transformation 

For the power transformation a model assisted BLUP with optimal properties, as derived above, 

cannot be constructed. The approach of Kipnis et al. (2009) can however be used to obtain a 

prediction in the following way. First approximate 𝑇𝑖 = 𝐹(𝑏𝑖) by Gauss-Hermite integration: 

𝐹(𝑏𝑖) =  𝑇𝑖 ≈
1

√𝜋
∑ 𝑤𝑗(𝜇𝑖 + 𝑏𝑖 + √2𝜎𝑤𝑥𝑗)

𝑝
𝑁

𝑗=1

 

Secondly again use Gauss-Hermite to approximate the expectation of the conditional distribution 

giving the prediction 𝑃𝑖. 

𝑃𝑖 = E[𝐹(𝑏𝑖) | �̅�𝑖
∗] =  ∫ 𝐹(𝑏)𝜙(𝑏; 𝜇𝑐 , 𝜎𝑐

2) 𝑑𝑏 ≈
1

𝜋
∑ 𝑤𝑘 ∑ 𝑤𝑗(𝜇𝑖 + 𝜇𝑐 + √2𝜎𝑤𝑥𝑗 + √2𝜎𝑐𝑥𝑘)

𝑝
𝑁

𝑗=1

𝑁

𝑘=1

 

which is a function of  �̅�𝑖
∗ through 𝜇𝑐. It is likely that the thus obtained predictions 𝑃𝑖 have a variance 

that is too small. If we would know the mean 𝜇𝑖𝑃 and variance 𝜎𝑖𝑃
2  of the predictions, the predictions 

could be linearly rescaled to have the correct mean 𝜇𝑖𝑇 and variance 𝜎𝑖𝑇
2 . The mean and variance of 

the prediction can be calculated using Gauss-Hermite integration: 

𝜇𝑖𝑃 =
1

√𝜋
∑ 𝑤𝑙

1

𝜋
∑ 𝑤𝑘 ∑ 𝑤𝑗 (𝜇𝑖 + √2

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
𝑥𝑙 + √2𝜎𝑤𝑥𝑗 + √2𝜎𝑐𝑥𝑘)

𝑝𝑁

𝑗=1

𝑁

𝑘=1

𝑁

𝑙=1

 

𝜎𝑖𝑃
2 =

1

√𝜋
∑ 𝑤𝑙 [

1

𝜋
∑ 𝑤𝑘 ∑ 𝑤𝑗 (𝜇𝑖 + √2

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑤

2 𝑛𝑖⁄
𝑥𝑙 + √2𝜎𝑤𝑥𝑗 + √2𝜎𝑐𝑥𝑘)

𝑝𝑁

𝑗=1

𝑁

𝑘=1

]

𝑁

𝑙=1

2

− 𝜇𝑖𝑃
2  

The proposed prediction then equals 
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𝑃𝑖
∗ = 𝜇𝑖𝑇 +

𝜎𝑖𝑇

𝜎𝑖𝑃

(𝑃𝑖 − 𝜇𝑖𝑃) 

 

15.5.2 Episodically consumed foods 

For episodically consumed foods we need to take the probability of consumption into account. Define 

𝑝𝑖  as the probability that individual i consumes the food on any given day. The usual intake for this 

individual is then given by the product of 𝑝𝑖 and 𝑇𝑖 which is now defined as the usual amount on 

consumption days. Since individuals will vary in their probability pi, besides modelling the amounts 

as for daily consumed foods, it is also necessary to model the frequency of consumption. A three stage 

analysis of 24-hour recall data is the necessary: 
1. A model for the frequency of consumption 

2. A model for the intakes on consumption days 

3. Integration of both models in order to obtain a usual intake distribution.  

Step 2 uses the analysis outlined in the previous section for the positive intakes only. For step 1 two 

popular models which describe between-individual variation for the probability of consumption are 

the beta-binomial model and the logistic-normal model.  

Beta-Binomial model for frequencies (BBN) 15.5.2.1 

Let 𝑛𝑖 be the total number of recall days for individual i and 𝑋𝑖 the number of days with a positive 

intake. The distribution of 𝑋𝑖, with 𝑝𝑖 the probability of consumption for individual i, is given by  

𝑋𝑖  ~ Binomial(𝑛𝑖, 𝑝𝑖) 
In this model the probability 𝑝𝑖 varies among individuals according to the Beta distribution: 

𝑓(𝑝) = 𝐵−1(𝛼, 𝛽) 𝑝𝛼−1 (1 − 𝑝)𝛽−1      with    𝐵(𝛼, 𝛽) =
Γ(𝛼) Γ(𝛽)

Γ(𝛼+𝛽)
 

Combining the binomial and the Beta distribution results in the betabinomial distribution: 

𝑃(𝑋𝑖 = 𝑥) = (
𝑛𝑖

𝑥
)

𝐵(𝛼 + 𝑥, 𝑛𝑖 + 𝛽 − 𝑥)

𝐵(𝛼, 𝛽)
 

The mean and variance of the betabinomial distribution are given by 

E[𝑋𝑖] = 𝑛𝑖
𝛼

𝛼+𝛽
     and     Var[𝑋𝑖] = 𝑛𝑖

𝛼𝛽(𝛼+𝛽+𝑛𝑖)

(𝛼+𝛽)2(𝛼+𝛽+1)
 

Using the reparameterization 𝜋 = 𝛼 (𝛼 + 𝛽)⁄  and 𝜑 = 1 (𝛼 + 𝛽 + 1)⁄ , it follows that  

E[𝑋𝑖] = 𝑛𝑖𝜋    and    Var[𝑋𝑖] = 𝑛𝑖𝜋(1 − 𝜋)[1 + (𝑛𝑖 − 1)𝜑] 
This reparameterization enables to model the probability 𝜋𝑖 of consumption for individual i directly as 

a logistic regression: 

logit(𝜋𝑖) = 𝛾0 + 𝜸1
𝑡  𝒁𝑖 

Note that the dispersion parameter 𝜑 is assumed to be equal for all individuals. The betabinomial 

logistic regression model can be fitted by means of maximum likelihood. 

Model based frequencies for usual intake 

For the model based usual intake distribution the estimated parameters 𝜋𝑖 and 𝜑 are backtransformed 

using 𝛼𝑖 = 𝜋𝑖 𝜑 (1 − 𝜑)⁄  and 𝛽𝑖 = (1 − 𝜋𝑖) 𝜑 (1 − 𝜑)⁄ . These can then be used to draw from the 

Beta distribution.  

Model assisted frequencies for usual intake 

For the model assisted usual intake distribution a prediction of the consumption probability is required 

for every individual. Simple predictions are (a) the observed frequencies for every individual or (b) 

the fitted probability for evey individual. When there are no covariables the fitted probability is the 

same for every individual. Alternatively (c) one can use the approach outlined in Kipnis et al (2009) 

employing the conditional expectation of the probability given the observed frequency: 

E(𝑝𝑖  | 𝑋𝑖 = 𝑥) =  ∫ 𝑝 𝑓(𝑝 | 𝑋𝑖 = 𝑥) 𝑑𝑝 =
𝑝

∫ 𝑝 
𝑓(𝑋𝑖 = 𝑥 | 𝑝) 𝑓(𝑝)

∫ 𝑓(𝑋𝑖 = 𝑥 | 𝑝) 𝑓(𝑝) 𝑑𝑝
 𝑑𝑝 =

𝑝
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=
1

𝑃(𝑥𝑖 = 𝑥)
∫ 𝑝 (

𝑛𝑖

𝑥
)

𝑝

𝑝𝑥(1 − 𝑝)𝑛𝑖−𝑥 𝐵−1(𝛼𝑖, 𝛽𝑖)𝑝𝛼𝑖−1(1 − 𝑝)𝛽𝑖−1𝑑𝑝 

=
𝐵−1(𝛼𝑖, 𝛽𝑖)

𝑃(𝑥𝑖 = 𝑥)
(

𝑛𝑖

𝑥
) ∫ 𝑝𝛼𝑖+𝑥(1 − 𝑝)𝑛𝑖+𝛽𝑖−𝑥−1𝑑𝑝 =

𝐵(𝛼𝑖 + 𝑥 + 1, 𝑛𝑖 + 𝛽𝑖 − 𝑥)

𝐵(𝛼𝑖 + 𝑥, 𝑛𝑖 + 𝛽𝑖 − 𝑥)𝑝

=
𝛼𝑖 + 𝑥

𝛼𝑖 + 𝛽𝑖 + 𝑛𝑖
 

For individual with zero intakes on all recall days a prediction for the random individual amount 

effect 𝑏𝑖 is not available. There seem to be two option for predicting the usual intake for such 

individuals: 

 Set the individual intake to zero 

 Simulate a model based prediction for the amount and combine this with the conditional 

expected probability given above to obtain an individual usual intake.  

Logistic-Normal model for frequencies (LNN0) 15.5.2.2 

In this model the distribution of 𝑋𝑖 is again binomial:  

𝑋𝑖  ~ Binomial(𝑛𝑖, 𝑝𝑖) 
The probability 𝑝𝑖 is now given by a logistic regression with a random effect  in the linear predictor 

which represents the between-individual variation in the probability 𝑝𝑖: 

logit(𝑝𝑖) = 𝜆𝑖 + 𝜈𝑖      with 𝜈𝑖  ~ N(0, 𝜎𝜈
2) and the regression equation 𝜆𝑖 = 𝛾0 + 𝜸1

𝑡  𝒁𝑖 

The marginal probability 𝜋𝑖 is obtained by integrating over the random effect 𝑣𝑖, i.e. using Gauss-

Hermite integration 

𝜋𝑖 = ∫ 𝐻(𝜆𝑖 + 𝜈)𝑓(𝜈)𝑑𝜈 ≈
1

√𝜋
∑ 𝑤𝑗𝐻(𝜆𝑖 +  √2𝜎𝜈𝑥𝑗)

𝑁

𝑗=1

 

in which 𝐻() is the inverse of the logit transformation. Note that this is different from logit
-1

(𝜆𝑖) 

which is the median probability. The model can be fitted by maximum likelihood using Gauss-

Hermite integration. An (approximate) maximum likelihood procedure is implemented in routine 

glmer of the lme4 package in R.  

For a new vector of covariates 𝒁𝑖
∗ the linear predictor 𝜆𝑖

∗ can be calculated along with its standard 

error Se(𝜆𝑖
∗). The marginal predicted probability 𝜋𝑖

∗ can be calculated by means of Gauss-Hermite 

integration and the standard error of the predicted probability can be calculated by means of the usual 

Taylor series expansion: 

Se(𝜋𝑖
∗) ≈

Se(𝜆𝑖
∗)

√𝜋
∑ 𝑤𝑗

𝑑

𝑑𝜆𝑖
∗ 𝐻(𝜆𝑖

∗ + √2𝜎𝜈𝑥𝑗)

𝑁

𝑗=1

=
Se(𝜆𝑖

∗)

√𝜋
∑ 𝑤𝑗𝐻(𝜆𝑖

∗ +  √2𝜎𝜈𝑥𝑗)[1 − 𝐻(𝜆𝑖
∗ + √2𝜎𝜈𝑥𝑗)]

𝑁

𝑗=1

 

Model based frequencies for usual intake 

For the model based usual intake distribution the estimated parameters 𝜆𝑖 and 𝜎𝑣
2 can be used to 

generate individual probabilities.  

Model assisted frequencies for usual intake 

For the model assisted usual intake distribution simple predictors are (a) the observed frequencies and 

(b) the marginal probability 𝜋𝑖. The conditional expectation (c) is given by 

E(𝑝𝑖|𝑋𝑖 = 𝑥𝑖) = ∫ 𝐻(𝜆𝑖 + 𝜈) 𝑓(𝜈 | 𝑋𝑖 = 𝑥𝑖) 𝑑𝜈
𝜈

= ∫ 𝐻(𝜆𝑖 + 𝜈) 
𝑓(𝑋𝑖 = 𝑥𝑖  | 𝜈)𝑓(𝜈)

∫ 𝑓(𝑋𝑖 = 𝑥𝑖  | 𝜈)𝑓(𝜈) 𝑑𝜈
 𝑑𝜈

𝜈

= 
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=
∫ 𝐻(𝜆𝑖 + 𝜈) [𝐻(𝜆𝑖 + 𝜈)]𝑥𝑖   [1 − 𝐻(𝜆𝑖 + 𝜈)]𝑛𝑖−𝑥𝑖  𝑓(𝜈) 𝑑𝜈

𝜈

∫  [𝐻(𝜆𝑖 + 𝜈)]𝑥𝑖   [1 − 𝐻(𝜆𝑖 + 𝜈)]𝑛𝑖−𝑥𝑖  𝑓(𝜈) 𝑑𝜈
𝜈

 

and both nominator and denominator can be approximated by means of the Gauss-Hermite 

integration. For individual with zero intakes on all recall days see above for the two options. 

Logistic-Normal model for frequencies correlated with amounts (LNN) 15.5.2.3 

This model is extends the LNN0 model with a correlation between the individual random effect 𝑏𝑖 for 

amounts and the individual random effect 𝑣𝑖 for frequencies. This model is also known as the NCI 

model and is introduced by Tooze et al (2006) with further mathematical details in Kipnis et al 

(2009). The model can be written as 

logit(𝑃(𝑌𝑖𝑗 >  0)  =  𝜆𝑖  +  𝑣𝑖 

𝑔(𝑌𝑖𝑗)  = 𝜇𝑖  +  𝑏𝑖  +  𝑤𝑖𝑗  

(𝑣𝑖 , 𝑏𝑖)~ BivariateNormal(0, 0, 𝜎𝑣
2, 𝜎𝑏

2, 𝜌)  and   𝑤𝑖𝑗  ~ N(0, 𝜎𝑤
2 ) 

The model can be fitted by maximum likelihood employing two-dimensional Gauss-Hermite 

integration as detailed in Appendix A. 

Model based usual intake 

Model based usual intake requires generation of the pair (𝑣𝑖, 𝑏𝑖) for many hypothetical individual. 

The usual intake 𝑈𝑖 for such a hypothetical individual is then given by 

𝑈𝑖 = 𝐻(𝜆𝑖 + 𝜈𝑖) 𝑇𝑖 = 𝐻(𝜆𝑖 + 𝜈𝑖) 𝐸𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗) | 𝑏𝑖] = 𝐻(𝜆𝑖 + 𝜈𝑖) 𝐹(𝑏𝑖)  

The second term can be calculated using the method outlined for daily intakes. 

Model assisted usual intake 

This requires simulatenous prediction of the random effect for frequency and for amount as outlined 

in Kipnis et al (2009). We have for individual i in the study (𝑈𝑖  |𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)  =  (𝑈𝑖  | 𝑌𝑖1

∗ , … , 𝑌𝑖𝑛𝑖

∗ ) =

 (𝑈𝑖  |𝑥𝑖 , �̅�𝑖
∗)   where 𝑥𝑖 is the number of positive intakes and �̅�𝑖

∗ is the mean of the transformed 

positive intakes. It follows that the required conditional expectation 𝑃𝑖 equals 

𝑃𝑖 = E[𝑈𝑖  | 𝑥𝑖, �̅�𝑖
∗] = 𝐸𝑣𝑖,𝑏𝑖

[𝐻(𝜆𝑖 + 𝑣𝑖) 𝐹(𝑏𝑖) | 𝑥𝑖, �̅�𝑖
∗] = 

=
∬ 𝐻(𝜆𝑖 + 𝑣𝑖) 𝐹(𝑏𝑖) 𝑓(𝑥𝑖 , �̅�𝑖

∗ | 𝑣𝑖 , 𝑏𝑖) 𝜙(𝑣𝑖 , 𝑏𝑖) 𝑑𝑣𝑖  𝑑𝑏𝑖

∬  𝑓(𝑥𝑖, �̅�𝑖
∗ | 𝑣𝑖, 𝑏𝑖) 𝜙(𝑣𝑖 , 𝑏𝑖) 𝑑𝑣𝑖 𝑑𝑏𝑖

 

Where 

𝑓(𝑥𝑖 , �̅�𝑖
∗ | 𝑣𝑖 , 𝑏𝑖) = [𝐻(𝜆𝑖 + 𝑣𝑖)]𝑥𝑖  [1 − 𝐻(𝜆𝑖 + 𝑣𝑖)]𝑛𝑖−𝑥𝑖 𝜙(�̅�𝑖

∗ − 𝜇𝑖 − 𝑏𝑖; 0, 𝜎𝑤
2 𝑥𝑖) ⁄  

Both nominator and denominator can be approximated by two-dimensional Gauss-Hermite 

integration.  Note that for the log-transform 𝐹(𝑏𝑖) = 𝑇𝑖 = exp (𝜇𝑖 + 𝑏𝑖 + 𝜎𝑤
2 2⁄ ) can be calculated 

exactly; for the power transformation an approximation must be used. It can be expected that the 

predicted usual intake will not have the correct variance. This can possibly be remedied by equating 

the mean and variance of 𝑈𝑖 and 𝑃𝑖. These are however rather involved to calculate.  

 

For individual with zero intakes on all recall days the model assisted usual intake can be set to zero, or 

can be simulated as follows 

1. Calculate the Model assistefrequency 𝑃0 for usual intake (see LNN0) 

2. Transform 𝑃0 back to the logistic scale, i.e. 𝐿0 = logit(𝑃0). Get the conditional distribution of  

(𝑏 | 𝑣 = 𝐿0 − 𝜆𝑖) ~ N (
𝜎𝑏

𝜎𝑣
𝜌(𝐿0 − 𝜆𝑖), (1 − 𝜌2)𝜎𝑏

2)  

3. Simulate a draw 𝑏0 from this conditional distribution and obtain the usual intake as  

𝑃0 exp(𝜇𝑖 + 𝑏0 + 𝜎𝑤
2 ) 

Note that the backtransformation from 𝑃0 to 𝐿0 is according to the median of the distribution rather 

than the mean.  
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15.5.3 Gauss-Hermite integration 

One-dimensional Gauss-Hermite integration 15.5.3.1 

Gauss-Hermite integration approximates a specific integral as follows 

∫ 𝑓(𝑥) exp(−𝑥2)  𝑑𝑥 ≈  ∑ 𝑤𝑗 𝑓(𝑥𝑗)

𝑁

𝑗=1

∞

−∞

 

   

in which 𝑤𝑗 and 𝑥𝑗 are weights and abscissas for N-point Gauss-Hermite integration, see Abramowitz 

and Stegun (1972). N-point integration is exact for all polynomials 𝑓(𝑥) of degree 2N-1, see 

Dahlquist and Björck (1974). This can for instance be used to approximate the mean of a function 

𝐹(𝑌) of a normally distributed random variable 𝑌 with mean 𝜇 and variance 𝜎2: 

∫ 𝐹(𝑦) 
1

√2𝜋𝜎
exp (−

(𝑦 − 𝜇)2

2𝜎2 )  𝑑𝑦 

∞

−∞

= ∫ 𝐹(𝜇 +  √2𝜎 𝑥)
1

√𝜋
exp(−𝑥2)  𝑑𝑥

∞

−∞

=
1

√𝜋
∑ 𝑤𝑗 𝐹(𝜇 + √2𝜎 𝑥𝑗)

𝑁

𝑗=1

 

 

 

Two-dimensional Gauss-Hermite integration 15.5.3.2 

One-dimensional Gauss-Hermite integration can readily be extended to two dimensions. The 

following principal result in two dimensions is more or less given in Jäckel (2005) for the standard 

bivariate normal distribution 𝜙(𝑥, 𝑦;  𝜌) with correlation parameter 𝜌: 

∫ ∫ 𝐹(𝑥, 𝑦) 𝜙(𝑥, 𝑦; 𝜌) 𝑑𝑥 𝑑𝑦 ≈
1

𝜋
∑ ∑ 𝑤𝑖𝑤𝑗 𝐹(√2[𝑎𝑥𝑖 + 𝑏𝑥𝑗], √2[𝑏𝑥𝑖 + 𝑎𝑥𝑗]) 

𝑁

𝑗=1

𝑁

𝑖=1

∞

−∞

∞

−∞

 

in which  

𝑎 =
√1+𝜌+√1−𝜌

2
 and b=

√1+𝜌−√1−𝜌

2
 as given in Jäckel (2005). 

Jäckel (2005) discusses other Gauss-Hermite approximations to the two-dimensional integral, but 

found that the approximation given above generally gives the most accurate results. For the general 

bivariate normal distribution with means (𝜇𝑥 , 𝜇𝑦) and variances (𝜎𝑥
2, 𝜎𝑦

2)  the integral can be 

approximated by means of 

1

𝜋
∑ ∑ 𝑤𝑖𝑤𝑗 𝐹(𝜇𝑥 + 𝜎𝑥√2[𝑎𝑥𝑖 + 𝑏𝑥𝑗],  𝜇𝑦 + 𝜎𝑦√2[𝑏𝑥𝑖 + 𝑎𝑥𝑗]) 

𝑁

𝑗=1

𝑁

𝑖=1

 

The product 𝑤𝑖𝑤𝑗 can be very small, especially when many quadrature points are used, thus wasting 

possibly precious calculation time. This can be remedied by pruning, i.e. by dropping combinations of 

(𝑖, 𝑗) with very small values of the product 𝑤𝑖𝑤𝑗.  

Maximum likelihood for the LNN model with two-dimensional Gauss-Hermite 15.5.3.3 

integration  

Denote non-consumption on day j for individual i as 𝑌𝑖𝑗 = 0.  The conditional likelihood, i.e. given 

random effects 𝑏𝑖 and 𝑣𝑖, of a non-consumption on day j equals, with 𝐻() the inverse of the logit 

function 

𝑃(𝑌𝑖𝑗 = 0 | 𝑏𝑖, 𝑣𝑖)   =  1 –  𝐻(𝜆 + 𝑣𝑖).  

The conditional likelihood of a positive intake 𝑌𝑖𝑗 > 0 equals, with 𝜙 the density of the normal 

distribution 

𝑓(𝑌𝑖𝑗 = 𝑦𝑖𝑗  | 𝑦𝑖𝑗 > 0, 𝑏𝑖, 𝑣𝑖) = 𝐻(𝜆 + 𝑣𝑖) 𝜙(𝑦𝑖𝑗 − 𝜇 − 𝑏𝑖; 0, 𝜎𝑤
2 ) 
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The conditional likelihood contribution for individual i is the product of the individual contributions 

for each day. The marginal likelihood contribution for individual i is obtained by integrating over the 

possible values of 𝑏𝑖 and 𝑣𝑖. Since the pair (𝑏𝑖, 𝑣𝑖) follows a bivariate normal distribution, the 

likelihood contribution for individual i can be approximated by means of two-dimensional Gauss-

Hermite integration. Individually based covariabels, such as sexe or age, imply that 𝜇𝑖 and 𝜆𝑖 must be 

used instead of 𝜇 and 𝜆. The likelihood must be optimized by means of some general optimization 

routine. 

15.6 Modelling acute exposures as function of covariates 

An acute risk assessment may be followed by an analysis where the acute intake distribution is related 

to a covariable and/or cofactor. 

15.6.1 Intake frequency model 

Let in and inpos be the total number of simulated intakes per individual, and the number of simulated 

positive intakes, respectively. Then inpos  is modelled as a function of e.g. age (and/or other 

individual characteristics), using a betabinomial distribution with binomial totals in  and 

overdispersion parameter   (independent of age). The fitted binomial probabilities are  ix xf̂  , 

where xi is the age of individual i, and the estimated overdispersion parameter is ̂ . 

15.6.2 Intake amount model 

For the positive intakes, consider power of logarithmically transformed values yijk. Average over 

replicates to obtain individual day averages yij.. These values are modelled in a ML analysis with 

random terms individual and individual.day as a function of age (and/or other individual 

characteristics), with the number of values per individual day (nij) as weights wij to correct for 

differences in the precision at the individual day stratum. The fitted values from the model are 

 ix xf̂ , where xi is the age of individual i. 

15.6.3 Estimating the acute risk variability of positive intake amounts 

Correct the full set of simulated positive intakes by )(
ˆ' ixijkijk yy  . Estimate the variance 

2

'y  of 

ijky' . We denote the estimated variance as
2

'
ˆ

y . Now for each selected age x the transformed positive 

intake distribution is modelled as normal with mean  xfx ̂  and variance 
2

'
ˆ

y . 

15.6.4 Estimating the acute intake distribution 

Acute intake distributions dependent on a covariate are obtained by numerical integration. For each 

combination of levels of the covariable and/or cofactor, intake frequency values and transformed 

intake amounts are simulated and multiplied. This results in a number of distributions each one 

representing the acute intake distribution corresponding to a specific combination of levels of the 

covariates. 

15.7 Screening models for large Cumulative Assessment Groups 

15.7.1 Statistical model for the screening step (acute exposure) 

The screening step implements a simple model that is applied to each SCC. Assume independent 

NonDetectSpike-LogNormal (NDS-LN) models for both the consumptions of food-as-measured in 

source S and the concentrations of compound C in source S. A non-detect consumption is assumed to 

be a zero consumption. A non-detect concentration will be imputed by a user-specified fraction 𝑓 of 

the Limit of Reporting. Then the model for consumption has 3 parameters and the model for 

concentration has four parameters, as specified in Table 26.  Note that the parameters of the 



Reference Manual MCRA 8.2  - 71 - 

 

consumption distribution are estimated from the consumption data using sampling weights if these 

have been provided in the consumption data set. 

 

Table 26. Parameters for screening models (per source/compound) 

parameter consumptions concentrations 

probability of a positive 𝜋𝑥 𝜋𝑐 

mean positives (ln scale) 𝜇𝑥 𝜇𝑐 

standard deviation positives (ln scale) 𝜎𝑥 𝜎𝑐 

value to use for NonDetects (ln scale)  𝑓 ∗ 𝐿𝑐 

 

Exposure is consumption times concentration, so on logarithmic scale they can be added 

 

𝑒 = 𝑥 + 𝑐 
 

The assessment will focus on a chosen percentile of exposure, e.g. p95. The relevant fraction will be 

denoted by 𝑝, for example 𝑝 = 0.95 for the 95
th
 percentile.  

The two NDS-LN models combine to three possibilities, depending on whether there is consumption 

and if so, whether the concentration is non-detect or positive. In the screening model the two 

possibilities that lead to potential exposure are modelled with a mixture of two lognormal distribution. 

For the non-detect case the positive exposure distribution equals the positive consumption distribution 

modified by the multiplication of a user-chosen factor times an estimate of the average worst-case 

limit value for concentration (LOR): 

 

𝜋1 = 𝜋𝑥(1 − 𝜋𝑐);   𝜇1 = 𝜇𝑥 + 𝑓𝐿𝑐;   𝜎1 = 𝜎𝑥 
 

where 𝐿𝑐 is the logarithm of the LOR, or, if there are multiple analytical methods with different LOR, 

a weighted average of these different LORs. 

For the detect case the positive exposure distribution is easily combined from the positive 

consumption distribution and the positive concentration distribution: 

 

𝜋2 = 𝜋𝑥𝜋𝑐;   𝜇2 = 𝜇𝑥 + 𝜇𝑐;   𝜎2 = √𝜎𝑥
2 + 𝜎𝑐

2 

 

𝑝 can be corrected for the non-consumptions to the appropriate fraction needed in the mixture of the 

two positive distributions: 

𝑝′ =
𝑝 − (1 − 𝜋𝑥)

𝜋𝑥
 

If 𝑝′ ≤ 0 then all positive exposures are beyond the requested fraction, and the estimated exposure is 

just 0.  

If 𝑝′ > 0 then the relevant log exposure 𝑒𝑝 satifies 

 

(1 − 𝜋𝑐) ∙ Φ (
𝑒𝑝 − 𝜇1

𝜎1
) + 𝜋𝑐 ∙ Φ (

𝑒𝑝 − 𝜇2

𝜎2
) = 𝑝′ 

 

where Φ(∙) represents the cumulative standard normal distribution function. The value of 𝑒𝑝 can 

easily be found in a bisection search within the interval [𝜇𝑚𝑖𝑛 − 4𝜎𝑚𝑎𝑥 ,   𝜇𝑚𝑎𝑥 + max(0, 𝑧𝑝′𝜎𝑚𝑎𝑥)].  

The final exposure percentile estimate then is exp(𝑒𝑝). 

Denote by 𝑒𝑝,𝑚𝑎𝑥 the highest estimate (for the SCC denoted by SCChighest). Then evaluate for each 

SCC the probability to exceed 𝑒𝑝,𝑚𝑎𝑥. 
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𝑃𝑖 = 𝑃𝑟(𝑒 > 𝑒𝑝,𝑚𝑎𝑥) = 𝜋𝑥 ∙ [(1 − 𝜋𝑐) ∙ Φ (
𝑒𝑝,𝑚𝑎𝑥 − 𝜇1

𝜎1
) + 𝜋𝑐 ∙ Φ (

𝑒𝑝,𝑚𝑎𝑥 − 𝜇2

𝜎2
)] 

 

𝑃𝑖 is a tentative measure for the ‘probability of a high exposure’. For SCChighest 𝑃𝑖 = 1 − 𝑝, for all 

other SCCs it will be lower. The sum of all these probabilities is not a meaningful probability in itself. 

However, this sum is used to scale the individual 𝑃𝑖  values to measures of relative importance for the 

SCCs 

𝐼𝑚𝑝𝑖 = 𝑃𝑖 Σ𝑃𝑖⁄  
 

Rank all SCCs according to 𝐼𝑚𝑝𝑖 and calculate cumulative importance. 

The relative importance of the two mixture components at 𝑒𝑝 can be estimated as 

 

𝑤1,2 =
𝜋1,2 ∙ 𝜙 (

𝑒𝑝 − 𝜇1,2

𝜎1,2
) /𝜎1,2

𝜋1 ∙ 𝜙 (
𝑒𝑝 − 𝜇1

𝜎1
) /𝜎1 + 𝜋2 ∙ 𝜙 (

𝑒𝑝 − 𝜇2

𝜎2
) /𝜎2

 

 

where 𝜙(∙) represent the standard normal probability density function. 

The user interface should allow to select the top-N SCCs from the list, based on a chosen percentage 

(e.g. 95%) of cumulative importance included. 

The full analysis will calculate exactly the same exposure distribution as a full analysis without 

screening. However, less information is retained in the output. This concerns tables with information 

on foods-as-eaten, which is only shown for the selected risk driver components (SCCs). 

Risk drivers are groupings of SCCs (risk driver components) at the level of measured-source-

compound combinations (MSCCs). Note that output for an MSSC (e.g. APPLE/captan) only covers 

the selected SCCs (e.g. APPLE from apple juice/captan and APPLE from apple pie/captan), but not 

unselected SCCs (e.g. APPLE from fruit yoghurt/captan).  

 

15.7.2 Statistical model for the screening step (chronic exposure) 

In chronic exposure assessments, the mean concentration of chemicals is calculated first, and 

combined with the consumption distribution. For this reason a chronic calculation uses less memory, 

and therefore larger datasets can be handled.  

The model described under Acute can be simplified for a chronic screening. The concentration 

distribution is only used to estimate a mean exposure, incorporating any effect from the imputation of 

non-detects. The exposure distribution is therefore only a scaled version of the consumption 

distribution.  

𝜋2 = 𝜋𝑥𝜋𝑐;   𝜇2 = 𝜇𝑥 + 𝜇𝑐;   𝜎2 = 𝜎𝑥 
 

The parameters of the consumption distribution (𝜋𝑥 , 𝜇𝑥 , 𝜎𝑥) are calculated from the observed 

individual means (OIMs), i.e. the mean daily consumptions over the survey days of each person in the 

data (allowing for sampling weights). The percentiles are calculated as 𝑒𝑝 = 𝜇2 + 𝑧𝑝′ ∙ 𝜎2 where z is a 

percentile of the standard normal distribution. The exceedances of the maximum percentile are 

calculated as 

𝑃𝑖 = 𝑃𝑟(𝑒 > 𝑒𝑝,𝑚𝑎𝑥) = 𝜋𝑥 ∙ Φ (
𝑒𝑝,𝑚𝑎𝑥 − 𝜇2

𝜎2
) 

 

15.8 Parametric uncertainty 

According to Cochran’s theorem, sample variance
2ˆ
y follows a scaled chi-square distribution. In the 

parametric bootstrap for the lognormal distribution, the sample variance
2ˆ
y  is replaced by a random 

draw from a chi-square distribution with 
1n -1 degrees of freedom; the sample mean ŷ is replaced by 
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a random draw from a normal distribution with parameters ŷ and 2*ˆ
y /

1n , giving a new set of 

parameters 
*ˆ
y , 2*ˆ

y . This is repeated B times.  

For the truncated lognormal and censored lognormal, large sample maximum likelihood theory is 

used to derive new parameters 
*ˆ
y and 2*ˆ

y . This is repeated B times.  

The binomial fraction of non-detects for the mixture lognormal and mixture truncated distribution is 

sampled using the beta distribution with uniform priors a = b = 1 (with the beta distribution as the 

empirical Bayes estimator for the binomial distribution). This is repeated B times.  

 

15.9 Uncertainty in aggregate exposure assessment (advanced use case) 

 

Example: Probabilistic (variability and uncertainty) cumulative non-dietary exposure input 

(matched to dietary survey individuals). Internal dose. 

 

 

Table 27: NonDietaryExposures 

 

idIndividual  idNonDietary 

Survey 

idCompound Dermal Oral Inhalation 

5432 1 011003001 10 5 17 

5432 1 011003002 34 20 18 

5433 1 011003001 11 6 15 

5433 1 011003002 35 22 16 

 

 

Table 28: NonDietaryExposuresUncertain 

 

idIndividual idNonDietarySurvey id idCompound Dermal Oral Inhalation 

5432 1 1 011003001 12 7 18 

5432 1 1 011003002 40 22 19 

5432 1 2 011003001 18 9 19 

5432 1 2 011003002 45 24 20 

5433 1 1 011003001 13 8 19 

5433 1 1 011003002 42 21 18 

5433 1 2 … … ... … 

 

 

 

Table 29: NonDietarySurveys 

 

idNonDietarySurvey Description Location Date NonDietaryIntakeUnit 

1 BROWSE, 

acute, 

cumulative, 

operators 

York 09/10/2012 µg/day 
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The NonDietaryExposuresUncertain table is similar to the table given in the previous example, except 

that the user has specified unique id numbers for each alternative uncertainty realisation.  

 

In this example, the user has exposure to two compounds, 011003001 and 011003002. For every 

uncertainty iteration, all individuals will therefore exposures from both. The exposures to the two 

compounds will be distributed according to the particular distribution used during the simulation to 

generate these values (e.g. independence or correlation should be included in the simulation as 

required). 

  

Individuals are assigned a different two-compound exposure value pair per uncertainty iteration.  

 

15.10 Dietary exposure point estimates in MCRA 

MCRA includes a low-tier, non-probabilistic approach for calculating exposures per food. This 

module does not model a population of individuals or individual-days, but uses nominal values for the 

compound concentrations, food consumption amounts (expressed for foods-as-measured), and 

includes the option to compute the exposures for different processing types. 

The following formula is used for computing the low-tier exposure estimate for the population for a 

(processed) food-as-measured and compound:  

<exposure> = <processing factor> * <compound concentration> * <consumption amount> / 

<average bodyweight> 

The concentration is based on the mean concentration according to the concentration model. Note that 

this includes the specified non-detects handling method. The consumption amounts are extracted from 

the consumption data as the weighted sum over all individual days, divided by the weighted sum of 

the individual (day) sampling weights. The average bodyweight is the weighted average bodyweight 

of the population of the assessment (using the individual sampling weights). 

15.10.1 Example with table grapes 

Population characteristics 15.10.1.1 

 

Foods as measure15.10.1.2 

 

Processed foods as measured  15.10.1.3 
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Processing factors 15.10.1.4 

 

Concentration models 15.10.1.5 

 

Dietary exposure point estimates 15.10.1.6 
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15.11 MCRA settings for exposure assessments with Test Tiers 

 

This appendix describes what settings are needed in MCRA 8.1 and 8.2 to implement the Test Tiers 1 

and 2. It also indicates what data have to be used. 

15.11.1 Test Tier 1 assessments acute  

 

To perform a Test Tier 1 assessment with MCRA the specific model settings are (see 15.11.5  for 
general settings):  

Model setting Choice MCRA 8.1 Choice MCRA 8.2 

MODEL/EXPOSURES   

Exposure – Choose default tier not available Test Tier 1 

MODEL/CONCENTRATIONS   

Correlate imputed values with sample potency yes  

Apply processing factors no  

(empty fields need not be filled in, they are implied by the choice for the Test Tier 1) 

Data sets: 

 Pesticide/commodity with no occurrence data : assume 0 

 Data table AgriculturalUse: based on authorization status, one use per RAC. 100% crop treated. 

 Data table UnitVariability: Provide unit variability factors from the PRIMO model  

 Data table Concentration: for water: 0.1 ppb for the 5 most potent active substances in the CAG 

for (only the active substances with at least one authorisation)  
 

15.11.2 Test Tier 2 assessments acute 

To perform a Test Tier 2 assessment with MCRA the specific model settings are (see 15.11.5  for 

general settings):  

Model setting Choice MCRA 8.1 Choice MCRA 8.2 

MODEL/EXPOSURES   

Dietary – Choose default tier not available Test Tier 2 

MODEL/CONCENTRATIONS   

Correlate imputed values with sample potency no  

Apply processing factors yes  

(empty fields need not be filled in, they are implied by the choice for the Test Tier 2) 

 

Data sets: 

 Pesticide/commodity with no occurrence data : assume 0 

 Data table Processingfactors: from EFSA 

 Data table AgriculturalUse: based on findings (including combinations) in occurrence data, 

allowing multiple uses per commodity. 100% crop treated. Non-authorised pesticides are fixed to 
percentage of findings in occurrence data. 

 Data table UnitVariability: Provide unit variability factors from the PRIMO model  

 Data table Concentration: for water: 0.05 ppb for the 5 most potent active substances in the CAG 

for (only the active substances with at least one authorisation)  
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15.11.3 Test Tier 1 assessments chronic 

To perform a Test Tier 1 assessment with MCRA the specific model settings are (see 15.11.5  for 

general settings):  

Model setting Choice MCRA 8.1 Choice MCRA 8.2 

MODEL/EXPOSURES   

Exposure – Choose default tier not available Test Tier 1 

Exposure model type Observed Individual 
Means 

 

MODEL/CONCENTRATIONS   

Correlate imputed values with sample potency yes  

Apply processing factors no  

(empty fields need not be filled in, they are implied by the choice for the Test Tier 1) 

Data sets: 

 Pesticide/commodity with no occurrence data : assume 0 

 Data table AgriculturalUse: based on authorization status, one use per RAC. 100% crop treated. 

 

15.11.4 Tier 2 assessments chronic 

To perform a Test Tier 2 assessment with MCRA the specific model settings are (see 15.11.5  for 

general settings):  

Model setting Choice MCRA 8.1 Choice MCRA 8.2 

MODEL/EXPOSURES   

Exposure – Choose default tier not available Test Tier 2 

Exposure model type Observed Individual 
Means 

 

MODEL/CONCENTRATIONS   

Correlate imputed values with sample potency no  

Apply processing factors yes  

(empty fields need not be filled in, they are implied by the choice for the Test Tier 2) 

Data sets: 

 Pesticide/commodity with no occurrence data : assume 0 

 Data table Processingfactors: from EFSA 

 Data table AgriculturalUse: based on findings (including combinations) in occurrence data, 

allowing multiple uses per commodity. 100% crop treated. Non-authorised pesticides are fixed to 

percentage of findings in occurrence data. 
 Data table Concentration: for water: 0.05 ppb for the 5 most potent active substances in the CAG 

for (only the active substances with at least one authorisation)  

15.11.5 General MCRA settings for Test Tiers 

For all Test Tier assessments some settings of MCRA are always the same: 

Model setting Choice MCRA 8.1 Choice MCRA 8.2 

SELECT/CONVERSION   

Include foods with only non-detect measurements yes yes 

Include compounds with only non-detect yes yes 
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measurements 

Step 2: allow conversion using ‘processing’ info yes yes 

Step 3a: allow conversion using 'food composition' 

info 

yes yes 

Step 3c: allow conversion using 'read across' info no no 

Step 4: allow market shares not summing to 100% no no 

Step 5: allow conversion to super-types no no 

Step 6: allow conversion using default processing 

factors 

no no 

Step 7: allow maximum residue limit data no no 

SELECT/AGRICULTURAL USE   

Use data in AgriculturalUse table yes yes 

Unspecified agricultural uses are considered not 
authorised (absent in samples), only specified 

agricultural uses are authorised 

yes yes 

MODEL/CONCENTRATIONS   

Apply exposure screening only if needed for 

large CAGs, with 

default settings 95, 
95, 0 

only if needed for 

large CAGs, with 

default settings 95, 
95, 0 

Concentration model Custom  

Default concentration model Empirical  

Non-detects replacement By f*LOR, f = 0.5  

Sample based yes  

Imputation of missing values yes  

Consumptions on the same day come from the same 
sample 

no  

MODEL/UNIT-VARIABILITY   

Unit variability model beta  

Estimates nature Realistic  

Default variability factor for unit weight <= 25g 1  

Default variability factor for unit weight > 25g 5  

MODEL/MIXTURES   

Apply mixture selection no no 

MODEL/MONTE-CARLO   

Number of Monte Carlo simulations e.g. 100000 e.g. 100000 

MODEL/UNCERTAINTY   

Perform uncertainty analysis yes (first test with 
no) 

yes (first test with 
no) 

Number of iterations per resampled set e.g. 10000 e.g. 10000 

Number of resample cycles e.g. 100 e.g. 100 

Resample concentrations yes yes 

Resample individuals yes yes 
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MODEL/OUTPUT   

Show percentiles for e.g. 50 90 95 99 

99.9 99.99 

e.g. 50 90 95 99 

99.9 99.99 

Percentage for upper tail e.g. 99 e.g. 99 

Show % of population below level(s) e.g. Automatic e.g. Automatic 

Include drill-down yes yes 

(empty fields need not be filled in, they are implied by the choice for a Test Tier) 
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